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We discuss elastic instabilities of the atomic crystal lattice at zero temperature. Because of long-range
shear forces of the solid, at such transitions the phonon velocities vanish, if at all, only along certain
crystallographic directions, and, consequently, the critical phonon fluctuations are suppressed to a lower
dimensional manifold and governed by a Gaussian fixed point. In the case of symmetry-breaking elastic
transitions, a characteristic critical phonon thermodynamics arises that is found, e.g., to violate Debye’s T3

law for the specific heat. We point out that quantum critical elasticity is triggered whenever a critical soft
mode couples linearly to the strain tensor. In particular, this is relevant for the electronic Ising-nematic
quantum phase transition in a tetragonal crystal as discussed in the context of certain cuprates, ruthenates,
and iron-based superconductors.
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Quantum fluctuations close to an instability of the ground
state result in fascinating, exotic behavior even at finite T
that is often at odds with conventional properties of materials
[1]. However, most of the recent interest has focused on
instabilities associated with the electronic degrees of free-
dom in metals and insulators [2–4]. In contrast, zero
temperature instabilities of the atomic crystal lattice have
attracted much less attention. While distortive instabilities
associated with the softening of an optical phonon have been
studied in the context of quantum critical paraelectrics [5–7],
quantum phase transitions involving the elastic degrees of
freedom, namely, uniform strains and acoustic phonons,
have remained largely unexplored even though such tran-
sitions are ubiquitous in various phases of matter such as
insulators, metals, and superconductors. It is the aim of this
work to fill this gap, and to study the critical thermody-
namics associated with elastic quantum criticality (EQC).
Elastic classical criticality, i.e., elastic instabilities at a

finite critical temperature Tc have been already studied and
classified by Cowley [8] and Schwabl and collaborators
[9–12]. These works identified the importance of shear
rigidity, a property that distinguishes crystals from liquids
and gases. This rigidity and the concomitant long-range
forces restrict criticality to an m-dimensional subspace in
a d-dimensional Brillouin zone, with m ≤ d, making the
transitions mean-field type for d ¼ 3 [9,13]. This physics is
also crucial for EQC, setting them apart from the paradigm
of a conventional quantum phase transition, i.e., without any
long range forces, involving electrons in metals and insula-
tors [14]. Compared to finite T elastic transitions, in EQC
one needs to take into account the dynamics of the acoustic
phonons. As a result, we find, for example, that Debye’s T3

law for specific heat Cp ¼ Tð∂S=∂TÞp is violated in a
characteristic manner close to symmetry-breaking EQC.

The following are our main results. From a study of the
statics and the dynamics of the critical acoustic phonons,
we construct the scaling form of the free energy associated
with all the different universality classes of EQC. This
allows us to obtain, in addition to the specific heat, other
thermodynamic quantities such as the thermal expansion
α ¼ ð1=VÞð∂V=∂TÞp, and the ratio Γ ¼ α=Cp. The latter is
a variant of the well-known Grüneisen parameter [15], and
it can be identified with the relative change of temperature
upon adiabatically changing the pressure, Γ ¼ 1=
ðVmTÞð∂T=∂pÞS with the molar volume Vm. The quantity
Γ has proven useful in the investigation of quantum
criticality in general as it necessarily diverges at a pres-
sure-tuned quantum critical point with characteristic power
laws [16–21]. Note that until now Γ has been theoretically
studied only in situations where the crystal lattice acts as a
nonintrusive probe and itself remains noncritical. We also
derive a general expression for the exponent θ characterizing
the dependence of the transition temperature TcðrÞ ∼ jrjθ on
the tuning parameter r of the quantum phase transition.
According to elasticity theory [22], the macroscopic

stability of the crystal requires that all eigenvalues of the
elastic constant matrix Cijkl be positive. This guarantees
that the acoustic phonon velocities, determined by the
eigenvalues of the dynamical matrix MikðqÞ ¼ Cijklqjql,
are finite, where q is the phonon momentum. At an elastic
transition a specific eigenvalue of Cijkl vanishes and,
depending on the degeneracy of this particular eigenvalue,
the strain order parameter is either a singlet, doublet, or
triplet of the irreducible representations of the crystal class
[8–12]. Importantly, at the instability the phonon velocity
goes to zero only for momenta along certain high symmetry
directions for which the phonon triggers only the critical
strain mode. However, for a generic direction the phonon
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excites the noncritical strains with finite elastic constants
as well, and consequently their velocity stays finite at the
transition. Thus, elastic criticality can be classified as type
0, I, or II depending on the dimensionality m ¼ 0; 1; 2,
respectively, of the critical phonon subspace [8]. The fact
that the phonons remain noncritical in a (d −m)-dimen-
sional subspace distinguishes elastic transitions from con-
ventional ones, for whichm ¼ d. In the following we study
two types of EQC, namely those that involve breaking of a
point group symmetry of the unit cell (in which case
m ¼ 1; 2), and those that do not (in which case m ¼ 0).
Symmetry-breaking elastic transitions.—If the EQC can

be associated with the breaking of a crystal symmetry,
the strain order parameter assumes a zero expectation value
in the symmetric, undistorted phase. Depending on the
presence or absence of a cubic invariant in the Landau
potential for the order parameter, the transition is expected
to be of first or second order. Of particular interest are
second-order transitions that are accompanied by critical
fluctuations which induce unusual behavior at finite T.
In Table I we list the elastic transitions associated with
spontaneous crystal-symmetry breaking. Most of these
transitions are of type I with a strain order parameter that
is a singlet. The exceptions are listed in the last two rows
that possess a doublet order parameter and are character-
ized by phonon velocities that vanish within one- as well as
two-dimensional subspaces, i.e., type I and II, respectively.
The Landau potential for the order parameter ε, being

either a singlet or a doublet, reads

VðεÞ ¼ r
2
ε2 þ u

4!
ðε2Þ2 þ σε: ð1Þ

A second-order quantum phase transition obtains for a
positive quartic coupling u > 0 if the tuning parameter r
goes to zero, r → 0, at T ¼ 0 and σ ¼ 0. This occurs when
the corresponding elastic constant listed in the second
column of Table I vanishes. The strain in general couples
to an externally applied stress σij. However, in most of
the cases the appropriate σ is a shear stress. The tuning

parameter, r ¼ rðpÞ, will in general depend on hydrostatic
pressure p, which arises from anharmonicities that mix the
irreducible representations, in particular, from a third order
term that couples the order parameter ε to the trace of
the strain, V int ∼ trfεijgε2.
Decomposing the phonon wave vector, q ¼ ðp;kÞ, into

an m-dimensional soft component p and a noncritical
(d −m)-dimensional component k with m ¼ 1; 2 for type
I and II, respectively, the phonon dispersion close to
criticality, r → 0þ, assumes the anisotropic form [10]

ω2 ∼ rp2 þ ap4 þ bk2 þ � � � ð2Þ

with finite constants a and b, and the dots represent other
terms not relevant for the following discussion. In order to
deal with this anisotropic spectrum, a possibility is to
perform the substitution k2 → k04. It amounts to introduc-
ing an effective spatial dimensionality deff ¼ mþ 2ðd −
mÞ ¼ 2d −m with d ¼ 3. The resulting scaling, r ∼ p2 and
ω2 ∼ p4;k04, determines the correlation length exponent
ν ¼ 1=2 and z ¼ 2, respectively [23]. As a result of the
enhanced effective dimensionality deff, the EQC is above its
upper critical dimension deff þ z ¼ 8 −m > dþc with dþc ¼
4 for any m ¼ 1; 2 and is governed by the Gaussian fixed
point, thereby justifying the above scaling. Evaluating the
Gaussian fluctuations of the critical phonon modes, we find
that the resulting free energy can be cast in the scaling form

F cr ¼ TðdeffþzÞ=zf
�

r

T1=ðνzÞ

�
; ð3Þ

where the function f possesses the asymptotics fðxÞ ¼
const for x → 0 and fðxÞ ∼ xνdeff−νzd ¼ x−m=2 for x → ∞.
With the help of Eq. (3) the critical phonon thermody-

namics is easily derived and summarized in Fig. 1. In the
quantum critical regime (i) in Fig. 1, we find, in particular,
a critical contribution to the phonon specific heat,
Ccr ∼ T3−m=2, i.e., Ccr ∼ T5=2 and Ccr ∼ T2 for type I and
type II transitions, respectively, signalling a breakdown of
Debye’s T3 law. The volume thermal expansion, α, is
determined by the pressure dependence of the tuning
parameter r so that αcr ∼ T2−m=2 at r ¼ 0. The critical
Grüneisen ratio defined as Γcr ¼ αcr=Ccr obeys Γcr ∼
1=T1=ðνzÞ with νz ¼ 1 as expected from scaling consider-
ations [16]. In the limit T ≪ r of regime (ii) in Fig. 1, on
the other hand, Debye’s T3 law is recovered, however,
with a critically enhanced prefactor, Ccr ∼ r−m=2T3. The
Grüneisen ratio diverges Γcr ¼ ðm=6Þ½1=Vmðp − pcÞ� with
a universal prefactor m=6, i.e., 1=6 and 1=3 for type I and
II, respectively, where we used rðT ¼ 0; pÞ ∝ p − pc with
the critical pressure pc. Note that the critical phonon
signatures vanish with a relatively high power of T and,
in fact, might be subleading, for example, compared to
gapless particle-hole excitations in metals.

TABLE I. Continuous symmetry-breaking elastic transitions
[8,9,11]. Second column: component of the elastic constant
matrix in Voigt notation that goes to zero at the transition; third
column: the strain order parameter; fourth column: type of the
transition in the classification of Cowley [8]. Modifications arise
for tetragonal crystals with a finite c16.

Elastic transition Constant Strain Type

Orthorhombic → monoclinic c44 ε23 I
Orthorhombic → monoclinic c55 ε13 I
Orthorhombic → monoclinic c66 ε12 I
Tetragonal → orthorhombic c11–c12 ε11–ε22 I
Tetragonal → orthorhombic c66 ε12 I
Tetragonal → mono- or triclinic c44 (ε23; ε13) I+II
Hexagonal → mono- or triclinic c44 (ε23; ε13) I+II
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We now turn to the discussion of the exponent governing
the phase boundary Tc ∼ ð−rÞθ near the quantum critical
point in Fig. 1. It is determined by the perturbative
renormalization of the tuning parameter, r → RðTÞ ¼
rþ δrðTÞ, which induces a T dependence, and
RðTcÞ ¼ 0. For metals one generically expects a temper-
ature dependence δr ∼ T2 so that Tc ∼

ffiffiffiffiffiffi
−r

p
and θ ¼ 1=2.

The situation is more interesting for solids where the
phonons provide the leading contribution to thermodynam-
ics, e.g., insulators or fully gapped superconductors. In
this case, the renormalization of r is determined by the
self-interaction of critical phonon degrees of freedom. An
explicit calculation, presented in the Supplemental Material
[24], yields θ ¼ 2=ð6 −mÞ. Them ¼ 1 result agrees with a
previous calculation in the context of quantum critical
piezoelectric ferroelectrics [6].
Tetragonal-to-orthorhombic transition.—As an illustra-

tion of a particular example, we discuss in some further
detail the tetragonal-to-orthorhombic transition which is
described by the order parameter ε11 − ε22, see Table I.
In this case, the critical phonon becomes soft for momenta
along diagonals in the q1 − q2 plane, i.e., q ∝ ð1;�1; 0Þ,
and the critical manifold is thus one-dimensional corre-
sponding to type I with m ¼ 1. For finite but small
deviations from the q1 ¼ q2 manifold the critical
phonon dispersion is given by (see Supplemental
Material [24]),

ρω2ðqÞ ≈ c11 − c12
2

q2þ þ 2c11 þ 2c12 þ c66
4

q2−

þ c44
4

q23 þ aq4þ: ð4Þ

Here q� ¼ ðq1 � q2Þ=
ffiffiffi
2

p
, and jqþj ≫ ðjq3j; jq−jÞ, and ρ is

the ionic mass density. As c11 − c12 → 0 at the transition,
the dependence on qþ is determined by the last term aq4þ

that derives from higher order terms of the strain potential.
In the vicinity of the second critical manifold q1 ¼ −q2 the
dispersion is obtained by interchanging qþ ↔ q− in the
above. Importantly, the dispersion in other directions does
not soften and remains noncritical as the remaining elastic
constants stay finite.
An interesting aspect of this particular transition is that

the tetragonal symmetry can also be explicitly broken by
σ ¼ ðp2 − p1Þ=2, where pi is the uniaxial pressure along
the i ¼ 1; 2 direction. This is reflected in the linear
thermal expansion βi ¼ −ð1=VmÞð∂S=∂piÞT . Whereas
the sum β1 þ β2 is expected to show similar behavior as
the volume thermal expansion, α, the uniaxial thermal
expansion, defined by the difference βσ ≡ β2 − β1 ¼
−ð1=VmÞð∂S=∂σÞT , is more singular. Minimization with
respect to the order parameter yields ε ¼ −σ=r in the linear
regime of small jσj ≪

ffiffiffiffiffiffiffiffiffiffi
r3=u

p
, and ε ∼ σ1=3 in the nonlinear

regime of large jσj ≫
ffiffiffiffiffiffiffiffiffiffi
r3=u

p
. Taking the renormalization

r → RðTÞ into account, one obtains in the former case
βcrσ ∼ σ∂Tð1=RðTÞÞ. The resulting T dependence is singular
in regime (i) with βcrσ ∼ σT−ð1þ1=θÞ, where the exponent θ
was introduced earlier, while in regime (ii) βσ is analytic in
T. In the nonlinear regime of σ and small temperatures,
on the other hand, the effective modulus is determined
by reff ¼ ∂2

εV ≈ ðu=2Þε2 ∼ σ2=3 and βcrσ ∼ T3(∂ðr−1=2eff Þ=
∂σ) ∼ T3σ−4=3. The accompanying uniaxial Grüneisen
ratio at r ¼ 0 diverges βcrσ =Ccr ¼ 1=ð9VmσÞ with the
universal prefactor 1=9 as σ is reduced.
Isostructural elastic transitions.—The remaining elastic

transitions not listed in Table I are generically not of
second order. Exceptions are specific points in the phase
diagram where the symmetry is enhanced by additional
fine-tuning, and particular interesting examples of this
class are isostructural transitions. Here, the expectation
value of a certain singlet representation, ε, of the strain
tensor which is itself invariant under all crystal symmetry
operations, changes in a critical manner. An example is
the isostructural volume collapse transition in a cubic
crystal where the singlet, ε ¼ trfεijg, represents fluctu-
ations of the volume,

R
V drεðrÞ ¼ δV.

The corresponding Landau potential generally contains
all powers of ε. The cubic term, however, can be made to
vanish by appropriately shifting ε → εþ ε0 by a constant
ε0 so that the potential assumes the same form as that of
Eq. (1), VðεÞ ¼ ðr=2Þε2 þ ðu=4!Þε4 − hε, where h is to be
identified, though, with an additional tuning parameter.
In order to reach the second-order quantum critical point
both parameters, h and r, must then be tuned to zero at
T ¼ 0, for example, as a function of an external field F and
pressure p. The criterion hðF; pÞ ¼ 0 and rðF; pÞ < 0
defines a line of first-order quantum phase transitions in the
(F;p) phase diagram between isostructural solids charac-
terized by different expectation values of ε. This line
terminates in a second-order quantum critical end point

FIG. 1 (color online). Left panel: Phase diagram for a symmetry-
breaking elastic quantum phase transition. The tuning parameter r
vanishes when tuning the corresponding elastic constant to zero,
see second column of Table I. The critical phonon thermodynamics
exhibits a crossover at T ∼ r giving rise to two regimes (i) and (ii).
The phase boundary, Tc ∼ ð−rÞθ, is determined by the exponent θ,
see text. Right panel: Critical phonon specific heat Ccr, phonon
thermal expansion αcr and Grüneisen ratio in the regimes (i) and
(ii) for pressure tuning rðT ¼ 0Þ ∝ p − pc; m ¼ 1; 2 for type I
and II, respectively.
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(QCEP) at a critical field, Fc, and pressure, pc, with
hðFc; pcÞ ¼ rðFc; pcÞ ¼ 0, see Fig. 2.
At this solid-solid quantum critical point a true mean-

field transition occurs without critical microscopic fluctua-
tions. Because of the high symmetry of the order parameter
ε, the isostructural transitions are all of type 0 in the
Cowley classification with the entire phonon sector being
noncritical. This peculiar aspect is rooted in the presence
of shear moduli that, in particular, distinguishes the solid-
solid QCEP from the liquid-gas analogue.
A hallmark of solid-solid end points is the breakdown of

Hooke’s law. Minimizing the potential at r ¼ 0 one obtains
ε ∼ h1=3 ∝ ðp − pcÞ1=3 at the critical field hðFc; pÞ ∝
p − pc resulting in a nonlinear strain-stress relation with
mean-field exponent 1=δ ¼ 1=3 and a divergent compress-
ibility ∂pε ∼ jp − pcj−2=3. The resulting energy depends
nonanalytically on the tuning parameter h, Vmin ∼ jhj4=3.
However, due to the absence of critical microscopic
fluctuations there is no diverging correlation length, and,
as a consequence, the usual scaling hypothesis for critical
phenomena is not applicable. As a result, the thermody-
namics at finite T for a solid-solid QCEP is nonuniversal
and depends on the T dependence of the tuning parameters,
e.g., h ¼ hðp;F; TÞ, induced by noncritical degrees of
freedom. Setting hðp; F; TÞ ¼ h0ðp;FÞ þ aTx, with e.g.,
x ¼ 2 for a metal, one obtains at r ¼ 0 a critical contri-
bution to the specific heat and thermal expansion, Ccr=T¼
−∂2

TVmin∼ jh0j1=3Tx−2 and αcr ¼ ∂T∂pVmin∼Tx−1jh0j−2=3,
respectively, for T → 0. The critical Grüneisen ratio in this
limit is given by Γcr ¼ αcr=Ccr ¼ ½1=3ðx − 1Þ�½1=Vmðp −
pcÞ� for h0 ∝ p − pc and the prefactor now depends on x.
Influence of disorder.—We briefly comment on the

influence of disorder on EQC. Usually, one distinguishes
the effect of random mass and random field disorder
describing disorder configurations that, respectively, pre-
serve or explicitly break the symmetry associated with the
order parameter, see Ref. [25] for a review in the context of
structural transitions. In the case of symmetry-breaking
EQC the importance of the former is decided by a modified

Harris criterion. Because of the enhanced spatial correlation
volume ξdeff with deff ¼ 6 −m, random mass disorder is
irrelevant or marginal for m ¼ 1; 2, respectively, as
2 ≤ deffν ¼ ð6 −mÞ=2. On the other hand, random field
disorder, if present, is relevant and is expected to modify
the criticality [26].
Linear coupling to soft, electronic modes.—Besides

being of fundamental interest, the notion of EQC is
actually relevant whenever a critical mode Φ, e.g., of
electronic origin, couples linearly to strain, Lint ¼ γ1Φε.
In this case, the elastic moduli obtain a strong perturbative
renormalization by the critical susceptibility δC ∼ γ21hΦΦi
that is singular by definition and drives the crystal
unstable. Upon approaching the phase transition, a cross-
over to elastic criticality occurs when this renormalization
becomes of the same order as the elastic moduli them-
selves. For classical elastic criticality, this is well known
[27,28] and has been experimentally confirmed for the
classical metaelectric end point in KH2PO4 [29]. The Mott
end point at finite T is also governed by critical elasticity
[30]. Such a crossover to elastic criticality is also expected
for the quantum case.
A crossover to a symmetry-breaking EQC should occur

whenever an electronic order parameter Φ breaks a point-
group symmetry of the crystal. This is in particular the case
for Ising-nematic ordering associated with a Pomeranchuk
instability of a Fermi surface [31] described by the order
parameter Φ ¼ Ψ†ð∂2

1 − ∂2
2ÞΨ, where Ψ† and Ψ are fer-

mionic creation and annihilation operators, respectively.
Such a transition that breaks discrete rotation symmetry of a
Fermi surface has been discussed for ruthenates, cuprates,
and, recently, for Fe-based superconductors [32]. In a
tetragonal crystal the order parameterΦ generically couples
linearly to the strain component ε11 − ε22, thereby trigger-
ing a tetragonal-to-orthorhombic elastic transition. Such a
structural transition, and the associated quantum phase
transition are currently being studied in systems such as
BaðFe1−xCoxÞ2As2 and FeSe tuned by pressure. In these
systems, even if the primary order parameter Φ is of
electronic origin [33–37], the resulting quantum criticality
is eventually governed by the long-range shear forces
of the crystal with the concomitant critical phonon
thermodynamics as presented in Fig. 1 [38], provided
the transition itself stays continuous [39]. Similarly, a
crossover to a solid-solid QCEP is expected whenever
the order parameter couples linearly to a strain component
that is invariant under point group operations. Examples of
such cases include the metaelectric and metamagnetic
QCEP [40,41], as well as the Kondo volume collapse
transition at T ¼ 0 [42,43].
Summary.—We studied all the different universality

classes of elastic transitions of a crystalline lattice at zero
temperature, namely, those that break point-group sym-
metries spontaneously and solid-solid quantum critical end
points. Elastic quantum criticality is triggered whenever the

FIG. 2 (color online). Phase diagram with a solid-solid QCEP.
A line of first-order solid-solid quantum phase transitions and a
line of finite temperature, T, second-order transitions meet at the
QCEP and enclose a surface of first-order transitions at finite T
(shaded area).
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order parameter couples linearly with strain. Consequently,
they are relevant for studying a wide range of correlated
electron systems such as ruthenates, cuprates, and certain
Fe-based superconductors.
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