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It was recently found that the electric local-field effect (LFE) can lead to a strong coupling of atomic
Bose-Einstein condensates (BECs) to off-resonant optical fields. We demonstrate that the magnetic LFE
gives rise to a previously unexplored mechanism for coupling a (pseudo-) spinor BEC or fermion gas to
microwaves (MWs). We present a theory for the magnetic LFE and find that it gives rise to a short-range
attractive interaction between two components of the (pseudo) spinor, and a long-range interaction between
them. The latter interaction, resulting from deformation of the magnetic field, is locally repulsive but
globally attractive, in sharp contrast with its counterpart for the optical LFE, produced by phase modulation
of the electric field. Our analytical results, confirmed by the numerical computations, show that the long-
range interaction gives rise to modulational instability of the spatially uniform state, and it creates stable
ground states in the form of hybrid matter-wave—-microwave solitons (which seem like one-dimensional
magnetic monopoles), with a size much smaller than the MW wavelength, even in the presence of
arbitrarily strong contact intercomponent repulsion. The setting is somewhat similar to exciton-polaritonic
condensates in semiconductor microcavities. The release of matter waves from the soliton may be used for
the realization of an atom laser. The analysis also applies to molecular BECs with rotational states coupled
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by the electric MW field.
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Ultracold atomic gases are used in various areas,
including quantum metrology and interferometry [1-3],
and the emulation of nonequilibrium quantum dynamics [4]
and condensed-matter physics [5—7]. They have also drawn
much interest as tunable media for quantum optics. In this
vein, comanipulation of quantum light and matter waves
has been studied in cavities loaded with atomic Bose-
Einstein condensates (BECs) [8,9]. Raman superradiance
in ultracold gases trapped in a cavity was used to generate
stationary lasing with a bandwidth < 1 MHz, and with the
average cavity photon number < 1 [10]. A mirrorless para-
metric resonance has been demonstrated for atomic BEC
loaded into an optical lattice (OL) [11]. Optomechanics-
induced large-scale structuring of ultracold atomic gases
was reported in Ref. [12]. The resonant interaction of laser
fields with BEC was also proposed for generating “photonic
bubbles” emulating cosmology settings [13].

An important feature of the interaction of light with
ultracold gases is the local-field effect (LFE), i.e., a feed-
back of the BEC on the light propagation. Strong LFE can
be induced in cold-atom experiments, as recently demon-
strated with the help of OLs [14-16]. Usually, OLs are
sturdy structures, maintaining perfect interference fringes.
However, asymmetric matter-wave diffraction on an OL
formed by counterpropagating optical fields with unequal
intensities [ 14] could be explained only by taking into regard

0031-9007/15/115(2)/023901(6)

023901-1

PACS numbers: 42.65.Tg, 05.45.Yv

deformation of the OL by the LFE [15]. Conventional rigid
OLs and their deformable counterparts may be categorized
as “stiff” and “soft” ones. Polaritonic solitons produced by
the hybridization of coupled atomic and optical waves have
been predicted in soft OLs [16], and are considered
promising for matter-wave interferometry due to their high
atom number density [17]. These results demonstrate the
potential of the soft OLs in studies of systems combining
quantum matter and photons, akin to exciton polaritons in
microcavities [18]. Furthermore, BECs built of up to 108
atoms are now available [19]. For such massive BECs, the
refraction-index change through the perturbation of the
atomic density may be significant, even for the laser-
frequency detuning from the resonance > 1 GHz, allowing
the LFE to generate hybrid matter-wave—photonic
states [16].

The use of spinor gases opens ways for the emulation
of spin-orbit coupling [7] and quantum magnetism [20],
as well as for the realization of quantum matter-wave [21]
and microwave (MW) [22] optics. In this context, the
MW magnetic field is used for manipulating spin states.
Coupling different hyperfine atomic states by MWs was
studied in other contexts, too, including dressed states [23],
domain walls [24], and instabilities [25].

However, manifestations of the magnetic LFE (MLFE)
in quantum gases have not been studied yet, unlike its
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electric counterpart. In this Letter, we develop the theory of
the MLFE for a MW field coupled to the pseudospinor
BEC. The MW wavelength (greater than or equivalent
to several millimeters) exceeds the typical size of the BEC
by orders of magnitude. In this situation, the BEC was
considered before as a thin slice that affects the phase of the
MW field. We find that the MLFE causes subwavelength
deformations of the MW amplitude profile, too, inducing a
long-range interaction between components of the pseu-
dospinor BEC. Unlike the electric LFE [16], where a
nonlocal interaction is induced by phase perturbations,
the long-range interaction generated by the MLFE is locally
repulsive but globally attractive. The same effect leads to
local attraction between the components of the BEC, which
may compete with collisional repulsion between them.
We demonstrate that these interactions create self-trapped
ground states (GSs) in the form of hybrid matter-wave—
microwave solitons, whose field component seems like
that of a magnetic monopole. Actually, the solitons realize
a dissipation- and pump-free counterpart of hybridized
exciton-polariton complexes in dissipative microcavities,
pumped by external laser fields. In opposition to our case,
the size of those complexes is much larger than the
polaritonic wavelength, while the effective mass of the
excitons is usually considered infinite [18]. Note that direct
dissipation-free emulation of the exciton-polariton setting
is possible, too, in a dual-core optical system [26].

We consider the magnetic coupling of the MW radiation
with frequency w; to two hyperfine atomic states ||)
and |t) which compose the BEC pseudo spinor [7,27],
with free Hamiltonian H, = p*/(2m) — (h5/2)03, where
76 is the energy difference between the two states, o3 is the
Pauli matrix, and p the atomic momentum. The magnetic
interaction is governed by the term

H. . —=— mu m” . (B —iwpt B* iwpt 1
int (Be~'®t! + Bre'r!). (1)
my Mgy

Here, m ; are matrix elements of the magnetic momentum,
and the magnetic induction is B = yoH +M with M =
m .y yy, with y and y; building the pseudospinor wave
function, |¥) = (y, exp (iw.1/2),y; exp (—iw 1/2))". In
the rotating-wave approximation, [y) = (y,y;)" satisfies
the system of coupled Gross-Pitaevskii equations (GPEs):
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with the MW detuning from the atomic transition
A = w; — 6. Neglecting the time derivatives of H and M
for the low-frequency MW, the wave equation for H reduces
to the Helmholtz form, V?H + w? /¢>H = —gyo? M.

We consider a cigar-shaped condensate with effective
cross-section area S, subject, as usual, to tight transverse
confinement, and it is irradiated by two linearly polarized
counterpropagating microwaves along the cigar’s axis x.
Eliminating the transverse variation of the fields under
these conditions [28], we reduce the coupled GPEs and
Helmholtz equation to the normalized form,

-
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with ¢,y = /Xow, 4, 1 =1t/ty, x = X/Xo, H= H/h, and
p=m,-my 1/ (hSX,), n=1,A/2, y=Newim; X,/
(h.S), k=Xow;/c measured in natural units of time
and coordinate, t) = f/(uom4h.), Xo = \/hty/m, where
h, is the magnetic-field strength and N the total atom
number. The rescaled wave function is subject to normali-
zation N+ N;= [T [|¢p,(x)]* + |y (x Wdx =1. If
collisions between atoms in different spin states are taken
into account, which may be controlled by the Feshbach
resonance [29], f in Eq. (3) combines contributions from the
MLFE and direct interactions. Upon proper rescaling,
the same system of Eqgs. (3) and (4) applies to a degenerate
gas of fermions [30,31] with spin 1/2, in which y| and y;
represent two spin components, coupled to the magnetic
field H, and asymmetry 7 is imposed by a dc magnetic field.

Equation (4) can be solved using the respective
Green’s function [32], H(x,1) =Aexp(ikx)+Cexp(—ikx)—
(v/2c) [ @sin(kx—x'|)p; (x'.1)py (X' ,1)dx, where con-
stants A and C represent the solution of the corresponding
homogeneous equation, i.e., they are amplitudes of two
incident counterpropagating microwaves. Since the MW
wavelength is far larger than the condensate size (k~107),
one may set exp(ikx) ~ 1 and sin (k|x —x'|)/k~ |x— x| in
the domain occupied by the condensate to simplify the sol-
ution:  H(x,1)=Ho—(7/2) [72|x=x|¢} (x'.0)p; (x'.1)d,
where Hy = A 4 C is made real by means of a phase
shift. The form of the magnetic field at |x| — oo resembles
that of a one-dimensional artificial magnetic monopole
[33]: Hagympe(X) = =Ny x|, Ny = [12 ¢} (x) ¢y (x)dx

Substituting the solution for H in Eq. (3), we arrive at the
final form of the GPEs:
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Thus, the MLFE gives rise to two nonlinear terms: the one
~f accounts for short-range interaction, while the integral
term represents the long-range interaction, which is locally
repulsive, but globally attractive because the repulsion
kernel, |x — x|, growing at |x| — oo, suggests a possibility
of self-trapping. The mechanism of creating bright solitons
by the spatially growing strength of local self-repulsion
was proposed in Ref. [34] and then extended for nonlocal
dipolar-BEC [35] settings; however, that mechanism was
imposed by appropriately engineered spatial modulation of
the nonlinearity, while here we consider the self-trapping in
free space.

The symmetric version of Egs. (5) and (6), with
n =0, may be combined into separate equations for
¢ =¢, £¢;, with trapping (for +) and expulsive (for —)
potentials, respectively. Therefore, this system has only
symmetric solutions (¢_ = 0). At |x| = oo, Egs. (5) and (6)
take the linear asymptotic form, i0,¢;; = —(1/2)0%.¢}1 +
(yN¢/2)|x[¢1; hence, solutions for the asymmetric
system (17 #0) have symmetric asymptotic tails, too,
¢, = ¢y ~exp(=(2/3)y/ yN¢|x|3/2).

The GS of system (5) and (6) with # = 0 and chemical
potential y is sought for as ¢, = e *'¢(x), where real ¢
satisfies the equation

2

1d 4 +0o0
g+ L [ xipar|e. 0

fip =
with 4 =p—"Hy. Thus, H, only shifts the chemical
potential in the zero-detuning system. For f = 0, it follows
from Eq. (7) that i and the magnetic field obey sca-
ling relations: {ji(y). H(x;r)=Ho}=(r/r0)**{i(r=r0).
H(x;y=v9)—Ho}, where y, is a fixed constant. Thus,
for n = 0 and f = 0, all the GSs may be represented by a
single one, plotted in Fig. 1(a), which was found by means
of the imaginary-time method. This is a hybrid soliton, built
of the self-trapped matter wave coupled to the subwave-
length deformation of the magnetic field.

In the presence of the local self-repulsion (f < 0), the
GS can be found with the help of the Thomas-Fermi appro-
ximation (TFA), which neglects the second derivative in

Eq. (7):

(1/4)\/v/IPlcosé at [§] < m/2,

2 _
P1pa(X) = { 0 at |¢ > 7/2, (8)
Hapa () 45 = (1/4)\/7]Blcos & at |¢] < z/2,
AT - I - )4 at fe > 52
)

where & = +/y/|f|x. An example, displayed in Fig. 1(b),
shows very good agreement of the TFA with the numerical
solution. Thus, the globally attractive long-range interac-
tion induced by the MLFE creates the self-trapped GS,
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FIG. 1 (color online). (a) The GS wave function, ¢(x), along
with its Fourier transform, ¢(k,), and magnetic field, H(x), for
p =0, with g = 4.26. (b) Comparison of the GS, as predicted by
the TFA [Egs. (8), (9), and (10)] (the dashed curves) and found
numerically (the solid lines) for # = =5 with y = 0.079. In both
plots, n =0, Hy =0, and y = 1073,

overcoming the arbitrarily strong self-repulsive contact
interaction.

The time-of-flight spectrum produced by releasing the
condensate can be used in the experiment to detect the
solitons predicted here, characterized by their distri-
bution over the longitudinal momentum, ¢(k,)=
J7& e ¥ gp(x)dx, as shown in Fig. 1 for # =0 and —5.
Specifically, the TFA yields

(1B1/7)"*
|61/ 47k )T (5/4 -

¢TFA(kx) = T |ﬁ|/43/kx)’

(10)

(5/4 +

where I' is the gamma function; see the right bottom
panel in Fig. 1. Note that expression (10) vanishes at

k, = £2/y/|p|(5/4 + n),n =0, 1,2, .... The strong com-
pression of the soliton in the momentum space, evident in
Fig. 1(b), may be used for the design of matter-wave lasers
[36,37], as the released beam will feature high velocity
coherence.

The existence of bright solitons in free space is related to
the modulational instability (MI) of flat states [38]. The flat
solution to Eq. (7) is ¢p = ®yexp (—iuyt), with the diver-
gence of y regularized by temporarily replacing |x — x| in
Eq. (7) by |x — x| exp (—e|x — x’|) with small € > 0. The
MI analysis for small perturbations with wave number k
and MI gain A proceeds, as usual, by substituting
§ = Bx. expliy(x.n)]. with {Dir) = (i gt} +
{<I>§0) ; )(go)} exp (ikx + At), where {(I)go) ; )(50)} are perturba-
tion amplitudes. The subsequent linearization and then
setting  e€=0 yields A% =—(k*/4 — pO3k* — y®3).
Because of nonlocality, 2% does not vanish at k2 — 0, in
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FIG. 2 (color online). Numerically found profiles of the GS
wave functions and magnetic field in the system with n =1,
p =0, and y = 1073, for Hy, = 0.5 (a), 1.5 (b), 6.0 (c). The
respective chemical potentials are u = —1.12 (a), —1.80 (b),
—6.079 (c). For the strongly asymmetric soliton in (a), the
analytical approximation predicts the amplitude ratio of the

two components 0.250, while its numerically found counterpart
is 0.235.

contrast with local models [38]. The MI is always present,
as A% remains positive at k% < 2|®|(\/° P + v + B|Dy|).
Thus, arbitrarily strong local self-repulsion, with g < 0,
does not suppress the ML

In the system with detuning, i.e., # # 0 in Eqgs. (5) and
(6), the background magnetic field H, is an essential
parameter. Figure 2 plots the GS wave functions, ¢4 (x),
and the corresponding magnetic field, H(x), for different
values of H,. The GS exhibits asymmetry between the
lower- and higher-energy components at H, <z, while
large H,, suppresses the asymmetry, as seen in Fig. 3, which
displays the scaled norms of the two components, N,
versus H,.

For n > H,, strongly asymmetric GSs can be found
using the stationary version of Egs. (5) and (6) with
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FIG. 3 (color online). The relative share of the total norm of
each component in the system with y = 1073, 8 = 0,57 = 1 vs the
background magnetic field, H,. The inset shows the dependence
for N, at small values of H,, (the stars) vis-a-vis the analytical
prediction.

chemical potential u = —n+ Au, |Au| <n. Then,
Eq. (5) eliminates the weak component in favor of the
strong one: ¢, ~ (2n)~"Hop,, and N| ~ H}/(4n*), which
agrees well with the numerical results, as shown by the
inset in Fig. 3. The substitution of this into Eq. (6) yields

3 1, BH3
A ) ___cvr_F'to 3
( et 2;7)‘”T 2da  ap

}/HZ +0o0
—l—gzo(pT(x)/ lx — x| 7 (x')dx’,
(11)

which is actually tantamount to Eq. (7). The respective
small deformation of the magnetic field is H(x) =
Ho — (rHo/4n) [7 4’% (x)]x = x'|dx’.

We have confirmed the stability of all of the GS states
by direct simulations of Eqgs. (5) and (6) with randomly
perturbed initial conditions. For the symmetric system with
n = p =0, the above-mentioned scaling implies that the
stability of a single GS guarantees the stability of all GSs,
while for the detuned system the stability had to be checked
by varying H, at a fixed y and 5. Furthermore, the stability
for n = f = 0 is predicted by the anti-Vakhitov-Kolokolov
(anti-VK) criterion, which states that the necessary stability
condition for bright solitons supported by the repulsive
nonlinearity is du/dN > 0 [39] (the VK criterion proper,
which pertains to attractive nonlinearity, is du/dN < 0
[38,40]). Although N =1 was fixed above, the criterion
can be applied by means of a rescaling which fixes y and
liberates N. As a result, the scaling relation ji ~y?/3 is
replaced by fi ~ N*/3; hence, the criterion holds.

Summarizing, we have explored the MLFE (magnetic
local-field effect) in the BEC built of two atomic states
coupled by the MW (microwave) field. We have deduced
the system of evolution equations for the matter-wave
components and the MW magnetic field, which demon-
strate that the subwavelength distortion of the magnetic
field by perturbations of the local atom density induces
short- and long-range interactions between the BEC com-
ponents. The same equations apply to the spinor wave
function of a fermionic gas coupled to the MW magnetic
field. The model produces the self-trapped GS in the form
of the hybridized BEC-MW subwavelength solitons, which
may be considered counterparts of the hybrid exciton-
polariton solitons in the dissipation-free system. Basic
characteristics of the solitons were obtained analytically.
The release of the solitons from the cigar-shaped trap may
be used as a source of coherent matter waves for an atom
laser. The flat states in the present system are subject to the
modulational instability, which is naturally related to the
existence of the bright solitons.

It is straightforward to extend the analysis to molecular
BECs, with the transition between two rotational states
driven by the electric MW field. Such ultracold molecular
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gases have a potential for quantum simulations of con-
densed-matter physics [41]. An interesting extension may
be the analysis of the system with a three-component
bosonic wave function corresponding to spin F = 1 [42], in
which a single MW field couples components with myp =
+1 to the one with my = 0. Other relevant directions for
the extension are a search for excited states in the system, in
addition to the GS, and the analysis of the two-dimensional
setting. Furthermore, it is relevant to investigate a potential
effect of the MLFE on quantum precision measurements.
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