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The formation of ultralong-range Rydberg molecules is a result of the attractive interaction between a
Rydberg electron and a polarizable ground-state atom in an ultracold gas. In the nondegenerate case, the
backaction of the polarizable atom on the electronic orbital is minimal. Here we demonstrate how
controlled degeneracy of the respective electronic orbitals maximizes this backaction and leads to stronger
binding energies and lower symmetry of the bound dimers. Consequently, the Rydberg orbitals hybridize
due to the molecular bond.
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The geometrical structure of molecules determines their
physical and chemical properties. The shape of an indi-
vidual molecular bond can be explained by the concept of
hybridization. The mixing of nearly degenerate atomic
orbitals leads to a new hybrid orbital, which allows one to
analyze structures of many basic molecules like carbon
dioxide, ammonia, or water. One of the first molecules
described this way was methane [1]. In CH4, the carbon
electrons, initially in an s or p configuration, are rearranged
into four hybrid orbitals sp3 while creating the molecular
bond. The new hybrid orbital contains 25% s character and
75% p character.
Here, we present the hybridization of a Rydberg electron

orbital induced by the formation of an ultralong-range
Rydberg molecule. Here, Rydberg molecules consist of a
single Rydberg atom bound to one or more ground-state
atoms. The bond in this type of molecule originates from
the elastic scattering between the slow Rydberg electron
and a ground-state atom. Diatomic Rydberg molecules
have been observed for S-states [2,3], D-states [4,5], and
P-states [6,7] in gases of Rb or Cs. Polyatomic Rydberg
molecules have been recently photoassociated from a gas of
Rb [8]. The presence of the neutral perturber inside the
Rydberg electron orbital can cause admixing with a nearly
degenerate hydrogenic manifold and energetically close by
l-states at the location of the ground-state atom [9]. As a
result, these so-called trilobite molecules can possess a
giant permanent electric dipole moment. For Cs, which has
an almost integer quantum defect for the S-state, this
admixture can amount to 90% and lead to a permanent
dipole moment of kilodebye, which was shown in Ref. [10]
for principal quantum numbers n ¼ 37, 39, 40. In Rb, the
hydrogenic manifold is energetically much further away.
Therefore, the hydrogenic admixture was less then 1% and
the observed permanent dipole moments were on the order
of 1D for n ¼ 35, 43 [11]. In this paper, unlike in the
experiments with trilobite states, we do not mix many states
with different principal and angular quantum numbers. We

demonstrate the perturber-induced formation of a new
hybrid orbital, which is a linear combination of only two
mj-states with known orbital shapes. This differs from
typical hybridization of orbitals with different angular
momentum [1]. Our experiment is a textbooklike example
of tunable hybridization in the field of Rydberg molecules.
The ratio of the contributing states can be precisely
controlled by an applied electric field. This allows for
tuning the contribution of one mj-state to the hybrid
orbital from 0 to 100% over the crossing of the two
mj-states.
In the absence of an external field, the magnetic substates

of the Rydberg energy levels are degenerate. This degen-
eracy can be lifted by applying a magnetic field B. The
initially degenerate states are then split into 2jþ 1 different
Zeeman levels labeled by the projection of the total angular
momentum on the quantization axis mj. Individual
mj-states can be brought back to degeneracy by applying
an additional electric field E aligned parallel to the B field.
In Fig. 1, calculated Stark maps in the vicinity of the 42D
state in an external magnetic field of B ¼ 13.55 G are
shown. The eigenenergies are obtained by diagonalizing
the full Hamiltonian consisting of an unperturbed atomic
Hamiltonian and two terms accounting for the interaction
with the magnetic and electric fields. The splitting between
states of different quantum numbers l, with l ≤ 3 is caused
by their quantum defects [12,13]. These states exhibit a
quadratic Stark effect, as can be seen for the 42D5=2 state,
which splits into six mj levels, shown in the magnification
of Fig. 1. States of the manifold with l > 3 show a linear
Stark effect, which results in a fanlike Stark structure. The
magnitude of the corresponding shifts depends on the
absolute value of mj. Since the electric and magnetic
dipole operators do not couple states of Δmj ≠ 0 for
E∥B, the mj ¼ 5=2 and mj ¼ 1=2 states become degener-
ate at E ¼ 1.135 V=cm exhibiting real crossing. The
absence of coupling between the atomic states provides
a clean two-level system, suitable for the investigation of
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hybridization of the electronic orbitals due to perturber-
induced coupling.
To describe the interaction of a Rydberg atom with a

ground-state atom in an external homogeneous electric and
magnetic fields, we write down the Hamiltonian,

Htot ¼ H0 þHB þHE þ
P2

M
þ Vsðr;RÞ; ð1Þ

where P2=M represents the kinetic energy of the ground-
state perturber in a center-of-mass frame, where M is the
reduced mass, H0 is a field-free electron Hamiltonian, and
HB and HE account for the interaction with the magnetic
and electric fields, respectively. In this approach, the total
three-body system is described by two relative positions of
the ground-state atom R and of the electron r, taken
with respect to the Rydberg ionic core as well as the
respective momenta P and p. Additionally, particles
are treated as pointlike. The pseudopotential Vsðr;RÞ
describing the interaction between the low-energy electron
and the perturbing atom takes, in the s-wave regime, the
form [14]

Vsðr;RÞ ¼ 2πℏ2as
me

δðr −RÞ; ð2Þ

where as is the s-wave scattering length and me is the
electron mass. For 87Rb, the triplet scattering length is
negative and as a consequence the potential (2) is attractive.
Taking into account the local electron density, the resulting
potential is proportional to jΨðRÞj2 [9]. Its modification
due to the p-wave shape resonance can result in a binding
by internal quantum reflection [15] and in the creation of

butterfly-type molecules [16]. Momentum-dependent cor-
rections to the scattering length can be calculated using a
semiclassical approximation [17]. We apply a Born-
Oppenheimer approximation and express the total wave
function as Ψðr;RÞ ¼ ψðr;RÞϕðRÞ, where ψðr;RÞ is the
electronic molecular wave function in the presence of the
perturber and ϕðRÞ describes the molecular rovibrational
state. This allows for computing the adiabatic potential
energy surfaces (APES) for the fine-structure states.
Subsequently, one can calculate the molecular binding
energies and the rovibrational molecular wave functions
by solving the Schrödinger equation using the previously
calculated APES. This method was used before for theo-
retical studies of molecules in external magnetic and
electric fields [18–20] and was experimentally verified
in Ref. [4].
Here, we are interested in the mixing of two orbitals,

mj ¼ 5=2 and mj ¼ 1=2, because of the presence of the
neutral atom inside the Rydberg electron orbit, which
manifests itself in a change of the molecular binding
energy EB. For fixed electric and magnetic fields, the
binding energy EB of a molecule in a certain configuration
is given with respect to the dissociation energy. We treat the
molecular potential Vsðr;RÞ as a perturbation in first order
to the Hamiltonian H0 ¼ H0 þHB þHE . For the calcu-
lation of the full Hamiltonian, we use the basis of
42D5=2, mj ¼ 5=2 and 42D5=2, mj ¼ 1=2 electron wave
functions,

ψ1=2ðrÞ ¼ R42DðrÞY1=2ðΘÞ ¼
ffiffiffi
3

5

r
R42DðrÞY0

2ðΘÞ
ψ5=2ðrÞ ¼ R42DðrÞY5=2ðΘ;ϕÞ ¼ R42DðrÞY2

2ðΘ;ϕÞ; ð3Þ

FIG. 1 (color online). Calculated Stark map of the atomic states in the vicinity of the 42D state for 87Rb. The electric field is aligned
parallel to the magnetic field B ¼ 13.55 G. All energies are plotted relative to the energy of the 42D5=2; mj ¼ 1=2 atomic state at E ¼ 0.
The states are labeled with quantum numbers of the states they adiabatically unite with at E ¼ 0. In the magnification, the Zeeman
splitting of the 42D5=2 manifold is visible. The green circle marks the investigated atomic crossing of themj ¼ 1=2 (blue) andmj ¼ 5=2
(red) energy levels. The part of the spherical harmonics that is relevant for the molecule formation at E ¼ 0 is depicted close to the
corresponding levels. The shaded areas (a) (magenta) and (b) (light blue) correspond to the measurement ranges of Fig. 2.
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where we include the respective Clebsch-Gordan coeffi-
cients and the spherical harmonics (shown in Fig. 2) in
accordance with the triplet state of the electron involved.
The radial wave functions are the same for both states.

Since we take the unperturbed wave functions as a basis,
there is no dependence on R left. Consequently, we obtain
the full Hamiltonian,

H ¼ η

� jY1=2j2 þ Δ1=η Y�
1=2Y5=2

Y1=2Y�
5=2 jY5=2j2 þ Δ2=η

�
; ð4Þ

where η ¼ ηðRÞ ¼ R
drVsðr;RÞjR42DðrÞj2 and Δ1 and Δ2

are the summed-up energy shifts arising from H0. By
diagonalizing the Hamiltonian (4), we obtain the new
eigenenergies of the system. The degeneracy between
the basis states occurs for Δ1 ¼ Δ2. In the experiment,
we can control the energy differenceΔ ¼ Δ2 − Δ1 and thus
the mixing of the states by tuning the electric field.
We excite Rydberg atoms in a two-photon process from a

magnetically trapped spin-polarized ultracold cloud of
87Rb atoms in the 5S1=2; F ¼ 2; mF ¼ 2 state [21] with
an applied magnetic offset field of B ¼ 13.55 G. The
typical temperature of the cloud is 2 μK and the peak
density is on the order of 1012 cm−3. The 780 nm laser
drives the lower transition. The detuning from the inter-
mediate 5P3=2 state is 500 MHz. The 480 nm laser driving
the upper transition is on constantly. After each 50 μs-long
780 nm laser pulse, we ionize Rydberg atoms and mole-
cules with an electric field and detect the ions on a
microchannel plate detector. We perform 800 cycles of
excitation, ionization, and detection in one cloud while
scanning the frequency of the red laser. This way, we obtain
one full spectrum of the Rydberg signal for a given value of
the electric field. We adjust the polarization of the light
driving the upper transition such that the intensities of
the two atomic lines close to the crossing (Fig. 1) are
comparable.
In Fig. 2, we show the measured Stark maps in the

vicinity of the mj ¼ 5=2 and mj ¼ 1=2 atomic states’
crossing, marked in Fig. 1 by the green circle. Due to stray
electric fields present in the experiment, the electric and
magnetic fields are not perfectly parallel. The angle
between ~E and ~B is on the order of a few degrees, which
in principle results in a very small coupling between the
two atomic states. Nevertheless, given the resolution of our
experiment, the considered atomic states appear as a true
crossing. The molecular states occur on the red side of the
atomic line. The energy difference between the atomic and
the molecular peak corresponds to the molecular binding
energy EB. Therefore, we can identify the molecular states
by comparing their binding energies at E ¼ 0 with the
calculated values [4] by tracing them back to the zero
electric field [Fig. 2(b)]. The molecular state visible in the
Fig. 2(a) originates from a ground-state toroidal molecule
bound in the equatorial plane (Θ ¼ π=2) of the mj ¼ 1=2
scattering potential (see inset of Fig. 1) with EB ¼
3.6 MHz at E ¼ 0. The molecular ground-state bound in
the axial lobe (Θ ¼ π; 0) of the same scattering potential
occurs at EB ¼ 13.7 MHz for E ¼ 0. While changing the

FIG. 2 (color online). Stark map in the vicinity of (a) the
degeneracy of the two atomic lines mj ¼ 5=2 and mj ¼ 1=2 and
(b) the mj ¼ 1=2 state followed from the zero electric field up to
the crossing. Computed atomic-state positions, shown before in
Fig. 1, are depicted with continuous white lines. All theoretical
molecular lines are plotted with respect to these atomic energy
levels. The hypothetical positions of the ground-state toroidal
molecular states, with no hybridization of the electron orbital, are
indicated with brown and magenta lines, for mj ¼ 5=2 and
mj ¼ 1=2, respectively. The binding energy of the toroidal
molecule belonging to the mj ¼ 1=2 state changes in the vicinity
of the atomic crossing. Calculated positions of the ground-state
toroidal and axial molecules are indicated, for the sake of
visibility, with red and pink dotted lines, respectively. In addition,
excited rovibrational toroidal states are visible in (b). However, it
is not possible to accurately trace them for higher electric fields.
We identify the weak diagonal lines visible at the higher electric
field as laser sidebands with no physical meaning. Note that the
atomic lines are saturated due to the chosen color scale. The
discontinuity in the mj ¼ 1=2 atomic line above 1.2 V=cm is an
experimental artifact.

PRL 115, 023001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
10 JULY 2015

023001-3



electric field, this axial molecule follows in parallel the
trace of the mj ¼ 1=2 atomic line up to the degeneracy
point, whereas the toroidal bends around the crossing and
asymptotically follows the mj ¼ 5=2 atomic line. In the
experiment, we are able to address the individual rovibra-
tional molecular states visible in the Fig. 2(b). However,
since the excited toroidal states are blurred near atomic
degeneracy, we focus our analysis on the molecular ground
states.
Assuming no hybridization, the molecular states of the

mj ¼ 1=2 and mj ¼ 5=2 would occur at a constant binding
energy EBðE ¼ 0Þwith respect to the corresponding atomic
lines regardless of the applied electric field. In Fig. 2, such
unperturbed ground-state toroidal molecule traces, plotted
in reference to the calculated atomic energy levels, are
shown for the mj ¼ 1=2 and mj ¼ 5=2 states with con-
tinuous brown and magenta lines, respectively. These two
states, described by the wave functions (3), form a basis for
our two-level model. Consequently to predict the behavior
of the perturbed hybrid states, we calculate the eigenener-
gies E� of the Hamiltonian (4). For a given molecular state,
the obtained analytical solution depends only on the energy
difference Δ between the mj ¼ 1=2 and mj ¼ 5=2 states
and a parameter η, which is determined from the fitting of
Eþ to the experimental data at E ¼ 0. In the experiment, the
energy difference Δ around the crossing depends to a good
approximation linearly on the electric field. E−, which
would correspond to the toroidal molecule of themj ¼ 5=2
state, was not observed in this experiment. By calculating
Eþ, i.e., the predicted binding energy, as a function of
ΔðEÞ, we reproduce the behavior of the toroidal and axial
molecular lines (Fig. 2) with high accuracy. Note that the
modeled molecular traces are plotted with respect to the
computed atomic positions. The scattering potential cou-
ples the unperturbed toroidal molecular lines, although the
respective atomic states cross without any level repulsion
between them. This leads to orbital mixing and therefore a
change in the Rydberg electron probability density, which
we observe as an increased binding energy of the toroidal
molecule. In the case of the axial molecule, the of-diagonal
coupling terms in the Hamiltonian (4) vanish. This is due to
the fact that the toruslike mj ¼ 5=2 spherical harmonic is
zero along the axial direction and thus does not modify the
mj ¼ 1=2 state in this direction. For this reason, the binding
energy stays constant.
In Fig. 3, the measured and calculated (Eþ) binding

energies of the considered molecules versus the electric
field are shown. Here, the binding energy is determined as
the difference between the measured atomic and molecular
energies. The binding energy of the toroidal molecules
increases from EBðE ¼ 0Þ of the mj ¼ 1=2 state, reaches
its maximum of EB ¼ 11.7 MHz, and asymptotically
decreases to EBðE ¼ 0Þ of the mj ¼ 5=2 state. This
transition can be attributed to an increase of the admixture
of the mj ¼ 5=2 state from 0 to 100%. The maximum

binding energy corresponds to an orbital consisting of 50%
mj ¼ 1=2 character and 50% mj ¼ 5=2 character. The
resulting shape of the orbital is shown in the inset of Fig. 3.
The hybridization introduces a ϕ dependence to the
Rydberg orbital, even though the asymptotic states were
spherically symmetric along the z axis. For the unperturbed
axial molecule, the shape of the Rydberg orbital remains
the same.
Directly at the crossing, the experimental binding energy

of the toroidal molecule and the calculated one deviate by
9%. The predominant reason for the discrepancy around the
crossing, for E > 0.8 V=cm, is the difficulty in determining
the atomic peak position caused by the non-Gaussian shape
of the peak. Additionally, for E > 1.2 V=cm, fitting of the
molecular state position becomes problematic. Moreover,
for the calculation, we only take into account the unper-
turbed states and not the real Stark states. Finally, more
levels could be included into the analysis. In view of these
facts, the agreement between the experimental data and our
simple model is remarkable. A more complicated analysis
would not lead to a significantly better agreement resulting
from the purely experimental constraints.
We have shown the hybridization of the Rydberg

electron orbital due to the molecule formation around
the crossing of the atomic lines mj ¼ 1=2 and
mj ¼ 5=2. The backaction of the bound perturber increases

FIG. 3 (color online). Measured binding energies of the axial
(orange points) and toroidal ground-state molecules (light blue
and violet points) versus the electric field. The binding energies
are extracted from two data sets shown in Figs. 2(a) and 2(b) and
hence indicated with two colors for the toroidal molecule data. A
ground-state atom inside the Rydberg electron in the toroidal
plane mixes two orbitals. As a result, the binding energy of the
mj ¼ 1=2 toroidal molecule increases, reaches its maximum
directly at the crossing, and then asymptotically decreases to
the EB value of the mj ¼ 5=2 toroidal molecule. Shown in the
inset is the relevant part for molecule formation of the spherical
harmonic of the hybridized Rydberg orbital at the crossing,
together with the two asymptotic shapes. The error bars are
determined as 2 standard deviations of the fit.
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the binding energy and consequently changes the shape of
the electron orbital. Mixing more than two electron orbitals
of known shapes by bringing them to degeneracy could
result in even more complex asymmetric electron configu-
rations. Furthermore, the influence of a different type of
perturber, like an atom of another element or a hetero-
nuclear molecule [22], as well as the effect of a few
perturbers on the electron orbital could be investigated. A
Rydberg electron orbital hybridized due to thousands of the
ground-state perturbers could be observed as an imprint on
a Bose-Einstein condensate [23]. Finally, engineering a
state by placing the perturber precisely at a desired position
might also be feasible in experiments with individual atoms
in microtraps.
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