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Using a covariant formalism, we construct a chiral kinetic theory Lorentz invariant to orderOðℏÞ, which
includes collisions. We find a new contribution to the particle number current due to the side jumps required
by the conservation of angular momentum during collisions. We also find a conserved symmetric stress-
energy tensor as well as the H function obeying Boltzmann’s H theorem. We demonstrate their use by
finding a general equilibrium solution and the values of the anomalous transport coefficients characterizing
the chiral vortical effect.
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Introduction.—The role of chiral anomalies in collective
dynamics has attracted considerable attention recently.
It has been known for some time [1,2] that a chiral medium
in a magnetic field or in rotation can respond by a current
along the field or the rotation axis—the chiral magnetic
or chiral vortical effect (CME and CVE). More recently,
the effects of anomalies in medium have come up in
several different experimental and theoretical contexts.
Charge-dependent correlations which may be driven by
the CME [3] have been observed in heavy-ion collisions.
The CVE in hydrodynamics has been discovered using
gauge-gravity duality [4,5]. Later, both CME and CVE
were shown to be universally required by the second
law of thermodynamics [6]. The recent discovery of “3D
graphene” [7,8] and the possible observation [9] of the
CME-induced negative magnetoresistance [10] have
opened a new experimental frontier for investigating
physical consequences of anomalies.
Despite the recent progress, the role of anomaly in

kinetic theory has not been completely understood. Kinetic
theory is essential for the understanding of nonequilibrium
dynamics and is applicable when external fields are weak
and collisions are rare, so that each particle moves along
its classical trajectory most of the time. Recent literature
focuses on the kinetic theory without collisions. It was
shown [11] that anomaly is encoded in the momentum-
space Berry curvature, and the action for such a motion has
been derived microscopically [12,13]. Although the action
and the equations of motion are not manifestly relativistic,
a hidden Lorentz invariance, involving nontrivial modifi-
cations of Lorentz transformations, has been found up to
order OðℏÞ [14]. Such modifications lead to side jumps
necessary to ensure angular momentum conservation in
collisions. However, the corresponding modifications to the
collision term have not been found so far.
In this Letter, we supply this so-far missing important

piece of the theory. First, we introduce a simple covariant
formalism allowing us to demonstrate Lorentz invariance

in an elegant and straightforward manner. We then discover
that the side jumps not only make the collision integral
nonlocal, but also require nontrivial contributions to the
particle number, energy-momentum, and entropy currents.
We prove the validity of Boltzmann’s H theorem, guaran-
teeing relaxation to equilibrium. We determine the values
of the CVE transport coefficients from the kinetic theory.
With the goal of understanding the CVE, we focus on the
physics of collisions without external electromagnetic
fields, which will be considered elsewhere.
Spin and relativity of particle worldline.—First of all

we need to generalize the side jump found in Ref. [14] to
finite Lorentz transformations. Let us consider the angular
momentum tensor of a relativistic spinning particle,

Jμν ¼ xμpν − xνpμ þ Sμν; ð1Þ
where Sμν is the spin. In relativistic classical mechanics the
separation between orbital motion and internal rotation as
well as the definition of the center of mass are ambiguous.
One can shift xμ by Δμ and, simultaneously, Sμν by Δνpμ −
Δμpν without changing Jμν. To define unambiguously the
particle position xμ, one needs to impose a gauge-fixing
condition on Sμν. For a massless particle (p · p ¼ 0), the
only Lorentz-covariant condition pμSμν ¼ 0 is not
sufficient—leaving residual shifts Δ satisfying Δ · p ¼ 0.
To fix the gauge completely one chooses an arbitrary frame
and uses its 4-velocity n to impose

nνSμν ¼ 0; ð2Þ
i.e., one requires that Sμν has only spatial components in the
frame n. Together the two conditions pμSμν ¼ nνSμν ¼ 0
fix Sμν in terms of n and p up to an overall factor

Sμνn ¼ λ
ϵμναβpαnβ

p · n
: ð3Þ

If nμ ¼ ð1; 0Þ, then Sijn ¼ λϵijkpk=jpj and thus λ is the
helicity of the particle.
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The frame dependence of the spin tensor Sμνn in Eq. (3)
implies that the particle position x also depends on the
frame choice, so that the total angular momentum in Eq. (1)
does not. This means that if one changes the frame from n
to n0 the position shifts, x0 ¼ xþ Δnn0 , so that

Sμνn0 − Sμνn ¼ pμΔν
nn0 − pνΔμ

nn0 : ð4Þ
Dotting this equation with nν and choosing the point on the
shifted world line where the shift is spatial in frame n,
Δnn0 · n ¼ 0, we find

Δμ
nn0 ¼ −

Sμνn0 nν
p · n

¼ λ
ϵμαβγpαnβn0γ
ðp · nÞðp · n0Þ : ð5Þ

This is the finite generalization of the infinitesimal side
jump found in Ref. [14]. Finite side jumps have been also
recently considered in Refs. [15,16].
Collisionless current.—We now consider kinetic theory,

where the system is characterized by the phase space
particle density f. As the particle positions depend on
the frame, so will f. Let us first ignore collisions, in which
case f is constant along the world lines. Assuming f and f0
in two frames n and n0 are related by f0ðx0Þ ¼ fðxÞ, we find
to linear order in ℏ, with λ ∼OðℏÞ,

f0ðxÞ − fðxÞ ¼ −Δ · ∂f ðcollisionlessÞ; ð6Þ
where Δ≡ Δnn0 .
The kinetic equation expresses conservation of the

phase-space current jμ, ∂μjμ ¼ 0, in the collisionless case.
According to Eq. (6), the naive phase-space current pμf is
not a Lorentz vector, since f is not a scalar field (its value at
a given point depends on the frame). One part of the
solution was found in Ref. [14]: the covariant current must
include a magnetization contribution which, in the classical
picture, is caused by the intrinsic rotation of the particles.
In our covariant notations

jμ ¼ pμf þ Sμν∂νf ðcollisionlessÞ; ð7Þ
where Sμν ¼ Sμνn . Both f and Sμν transform nontrivially
under the frame change n → n0 according to Eqs. (4) and
(6) but, after cancellations,

j0μ − jμ ¼ −Δμðp · ∂fÞ ðcollisionlessÞ: ð8Þ
Thus the current in Eq. (7) is frame independent in
collisionless kinetic theory where p · ∂f ¼ 0.
Collisions will make the current in Eq. (7) frame

dependent. To solve this problem, we have to step back
and try to understand what contribution to the current we
may have missed. Equation (8) hints that it is related to the
side jump and is proportional to the collision rate.
Collisions and jump current.—Let us look at the colli-

sions more closely and, for simplicity, consider elastic
2 → 2 collisions. From the classical point of view, such
collisions involve 2 incoming and 2 outgoing world lines.

It is convenient to think of incoming particles as being
annihilated and outgoing particles as being created in that
process. For particles without spin, we can assume that all
4 annihilation or creation events happen at the same
spacetime point x. The continuity of the particle current
is obvious in this case.
However, for a spinning particle, this cannot remain true

in all frames, because that would contradict conservation
of angular momentum [14]. We assume here that for each
given collision kinematics there is a special frame—the
“no-jump frame” n̄—in which all four particle worldlines
converge to one spacetime point as in the spinless case. The
natural choice for this special frame is the center of mass
frame: n̄ ¼ ðpA þ pBÞ=

ffiffiffi
s

p
, where pA and pB are the

momenta of the incoming particles. To ensure continuity
of the current in a given (lab) frame n ≠ n̄ we must include
a “jump current” associated with the spacelike motion of
each participant particle between the common collision
spacetime point x and the particle’s annihilation or creation
point in the lab frame, xþ Δ̄, where, from Eq. (5),

Δ̄μ ≡ Δμ
n̄n ¼ λ

ϵμαβγpαn̄βnγ
ðp · nÞðp · n̄Þ : ð9Þ

This tunnelinglike motion of the particle during the
collision would be from xþ Δ̄ to x if the particle is
incoming, or the reverse if it is outgoing. Weighing by
the probability of the collision with each given kinematics,
we are led to consider the current

jμ ¼ pμf þ Sμν∂νf þ
Z
BCD

CABCDΔ̄μ; ð10Þ

where we introduced short-hand notations for the usual
Lorentz invariant integration over the phase space of the
particles B, C, and D:

Z
d4pB

ð2πÞ3 2δðpB · pBÞθðn · pBÞ≡
Z
pB

≡
Z
B
; ð11Þ

etc., and for the collision kernel

CABCD ≡WCD→AB −WAB→CD; ð12Þ
where W is the rate of collisions with given momenta
pA ≡ p, pB, pC, and pD. The signs of the two terms reflect
the directions of the jump depending on whether A is
incoming or outgoing.
Let us now check Lorentz covariance of the current jμ in

Eq. (10) by considering a different frame n0, as we did
before in Eq. (8). Comparing 4-vectors j0μ and jμ we find
this time

j0μ − jμ ¼ pμðf0 − f þ Δ · ∂fÞ − Δμðp · ∂fÞ
þ
Z
BCD

CABCDðΔμ
n̄n0 − Δμ

n̄nÞ: ð13Þ
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The last term can be transformed using Eqs. (5) and (4);

Δμ
n̄n0 − Δμ

n̄n ¼ −
ðS0 − SÞμνn̄ν

p · n̄
¼ Δμ

nn0 − pμ Δnn0 · n̄
p · n̄

: ð14Þ

The meaning of Eq. (14) is straightforward: the jump
from n̄ to n0 equals the jump from n̄ to n plus the jump from
n to n0 (Δ) up to a shift along the worldline [the last term
in Eq. (14)].
Substituting into Eq. (13) we observe that Δμ is

independent of the integration variables pB, etc., and thus
can be taken outside of the integration. The remaining
integral coincides with the collision rate

Cðx;p≡ pAÞ ¼
Z
BCD

CABCD; ð15Þ

and, since by kinetic equation p · ∂f ¼ C½f� þOðℏÞ, this
term cancels the Δμðp · ∂fÞ term in Eq. (13) to order ℏ.
To cancel the last term in Eq. (14), substituted into

Eq. (13) the distribution function must transform under the
Lorentz transformation [in addition to the shift of the
argument by Δ in Eq. (6)] as

f0 − f ¼ −Δ · ∂f þ
Z
BCD

CABCD
Δ · n̄
p · n̄

: ð16Þ

The additional term in Eq. (16) compared to Eq. (6)
accounts for the colliding particles undergoing the side
jumps. Thus, we verified that the phase-space current jμ in
Eq. (10) is Lorentz covariant provided f transforms as
Eq. (16) and CABCD is Lorentz invariant.
Collision kernel.—Using Eq. (10) and n · Δ̄ ¼ 0 we see

that f ¼ n · j=n · p, i.e., naturally, the time component of the
current j0 divided by the particle energy in the frame n. Since
the collision probability WAB→CD must be a Lorentz scalar,
i.e., independent of n, the frame-dependent f cannot dire-
ctly determine WAB→CD as in jMj2fAfBð1 − fCÞð1 − fDÞ.
Instead, we must use the distribution function in a frame,
associated with the collision itself. The most natural choice
is the no-jump frame n̄,

f̄ ¼ n̄ · j
n̄ · p

: ð17Þ

Now, with the n-independent distribution function in
Eq. (17) we can write [17]

WAB→CD½f̄� ¼
1

2!
jMðs; tÞj2ð2πÞ4δ4ðpA þ pB − pC − pDÞ

× f̄Af̄Bð1 − f̄CÞð1 − f̄DÞ; ð18Þ
where factor 1=2! accounts for the indistinguishability of
the outgoing particles. Using the Lorentz covariant jμ and
C, we can write a Lorentz invariant chiral kinetic theory
with collisions

∂ · j ¼ C½f̄�; ð19Þ

where jμ is given by Eq. (10) and C is given by Eqs. (15),
(12), and (18), with f̄ from Eq. (17).
Using Eqs. (10) and (15) and the transformation of f in

Eq. (16) we can also rewrite Eq. (19) as

p · ∂f ¼
Z
BCD

CABCD½f�
�
1 −

Z
B0C0D0

∂
∂f CAB0C0D0

Δ̄ · n̄0

p · n̄0

�
;

ð20Þ
where n̄0 is the no-jump frame of the collision AB0 ↔ C0D0.
In the form of Eq. (20) Lorentz invariance is not manifest
as in Eq. (19), but the collision kernel is expressed solely
in terms of the distribution function f in the lab frame.
Equations (19) and (20) are equivalent to linear order in ℏ.
Conserved currents.—Since the underlying quantum

theory of Weyl fermions is invariant under CPT, we must
take into account antiparticles, which also participate in
collisions. These can be easily incorporated by considering
the particle charge q ¼ �1 as an additional discrete index
of the distribution function fðx; p; qÞ, indices A, B, etc., as
composite indices A ¼ ðpA; qAÞ, etc., and accompanying
integration over p by summation over q. CP invariance
implies λ ¼ qjλj. The net current of q is given by

Jμq ¼
X
q

Z
p
qjμ; ð21Þ

and its conservation, ∂μJ
μ
q ¼ 0, follows from Eq. (19) and

the charge conservation in a collision:
P

q

R
p qC ¼ 0.

Similarly, one can show that the following covariant
symmetric (and traceless) tensor

Tμν ¼
X
q

Z
p

1

2
ðpμjν þ pνjμÞ ð22Þ

is conserved ∂νTμν ¼ 0 due to the energy-momentum and
angular momentum conservation in the collisions.
Entropy current and H theorem.—An important prop-

erty of kinetic theory is the existence of the entropy—a
functional of f which does not decrease with time. This is
known as the H theorem, which guarantees that the system
relaxes to equilibrium. To prove the H theorem we need
to find the corresponding covariant current Hμ whose
divergence is non-negative.
First let us generalize current jμ to a current describing

advection of a generic, for now, quantity H which is a
function of the distribution function f. Following the same
steps as in Eqs. (10)–(16) we find that the following
current,

Hμ ¼ pμHþ Sμν∂νHþ
Z
BCD

CABCDΔ̄μ ∂H
∂f ; ð23Þ

does not depend on the choice of the frame n to linear order
in ℏ. With H → f, Eq. (23) becomes Eq. (10) and the
meaning of the last term is again the contribution of the
particles undergoing side jumps.
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Using Eq. (20) one can also show that

∂μHμ ¼
Z
BCD

CABCD½f̄�
∂H
∂f̄ : ð24Þ

Furthermore, using the AB ↔ CD symmetry of the
amplitude jMj in Eq. (18) we can write Eq. (12) as

CABCD ¼ WAB→CDðr − 1Þ; ð25Þ

where

WCD→AB

WAB→CD
¼ f̄Cf̄Dð1 − f̄AÞð1 − f̄BÞ

f̄Af̄Bð1 − f̄CÞð1 − f̄DÞ
≡ r; ð26Þ

and express the current Hμ ≡ R
p H

μ as

∂μHμ ¼
Z
ABCD

WAB→CDðr − 1Þ ∂H∂f̄A : ð27Þ

Now, choosing H so that ∂H=∂f ¼ ln½ð1 − fÞ=f�, i.e.,

H ¼ f ln
1

f
þ ð1 − fÞ ln 1

1 − f
; ð28Þ

and (as in Ref. [18]) using the A ↔ B and C ↔ D
symmetry of jMj in Eq. (18) and the fact that r → 1=r
under AB ↔ CD according to Eq. (26) we can write for the
divergence of the entropy current Hμ in Eq. (27)

∂μHμ ¼ 1

4

Z
ABCD

WCD→ABðr − 1Þ ln r ≥ 0: ð29Þ

The rate of entropy production ∂ ·H vanishes when r ¼ 1.
Equilibrium.—Let us denote, for convenience,

gðfÞ≡ ln
1 − f
f

; ð30Þ

i.e., fðgÞ ¼ 1=ðexp gþ 1Þ. In terms of ḡ≡ gðf̄Þ, the ratio r
in Eq. (26) is given by

r ¼ expðḡA þ ḡB − ḡC − ḡDÞ: ð31Þ

The collision kernel in Eq. (25) vanishes if r ¼ 1 (detailed
balance), which happens if ḡ is a linear combination of
quantities conserved in the collision (energy, momentum,
angular momentum, and charge), i.e.,

gðf̄eqÞ ¼ p · Ū þ 1

2
S̄αβΩ̄αβ − qȲ; ð32Þ

where S̄ ¼ Sn̄ is the spin tensor in the no-jump frame
(orbital momentum is zero), q is the charge and Ū, Ȳ, and
Ω̄αβ ¼ −Ω̄βα are coefficients (possibly x dependent). The
distribution function feq in another frame n unrelated to

the collision kinematics can be obtained by transfor-
mation (16), according to which g ¼ ḡ − ðΔ̄ · ∂Þḡ (since
CABCD½f̄eq� ¼ 0). Also expressing S̄ in Eq. (32) in terms of
S using Eq. (4) we can then write for feq,

gðfeqÞ ¼ p · U þ 1

2
SμνΩμν − qY; ð33Þ

where Uα ¼ Ūα þ ðΩ̄αβ − ∂αŪβÞΔ̄α, Ω ¼ Ω̄ and Y ¼
Ȳ − ðΔ̄ · ∂ÞȲ. The dependence on the collision kinematics
via vector n̄ [in Δ̄ according to Eq. (9)] drops out, as it
must, if ∂αŪβ ¼ Ω̄αβ and Ȳ ¼ const, which also means
U ¼ Ū and Y ¼ Ȳ. The distribution in Eq. (33) describes a
rotating (shear-free) fluid. It is easy to check that feq given
by Eq. (33) solves kinetic equation (19). In the conven-
tional notations U ¼ βu, where β ¼ ffiffiffiffiffiffiffiffiffiffiffi

U ·U
p

and Y ¼ βμ.
Chiral vortical effect.—Now, for the rotating distribution

in Eq. (33), we can calculate the number current Jμq in
Eq. (21) using Eq. (10). It is convenient to express the
distribution in the local comoving frame, i.e., choose n ¼ u
(we have not relied on n being coordinate independent). To
linear order in gradients we find

Jμq ¼ nquμ þ ξωμ; ð34Þ
with ωμ ≡ 1

2
ϵμαβγuα∂βuγ, nq ≡P

q

R
pðp · uÞqf0 and

ξ≡ β
X
q

Z
p
ðp · uÞqλ

�
−
df0
dg

�
¼ μ2

4π2
þ T2

12
; ð35Þ

where −df0=dg ¼ f0ð1 − f0Þ, T ¼ 1=β and f0 is the
Fermi-Dirac distribution to zeroth order in gradients,
i.e., gðf0Þ ¼ βðp · u − qμÞ.
Similarly, for the stress energy tensor in Eq. (22) we find

Tμν ¼ wuμuν − pgμν þ ξTðωμuν þ ωνuμÞ; ð36Þ

where w and p are the usual expressions for the enthalpy
and pressure of the Weyl gas and

ξT ¼ 2

3
β
X
q

Z
p
ðp · uÞ2λ

�
−
df0
dg

�
¼ μ3

6π2
þ μT2

6
; ð37Þ

which is twice the result found in Ref. [1] due to the
contribution of the spin coupling to vorticity. For the
entropy current in Eq. (23) we find

Hμ ¼ suμ þ ξHω
μ; ð38Þ

where s ¼ βðw − μnÞ and

ξH ¼ 3

2
βξT − βμξ ¼ μT

6
: ð39Þ

One can check that these results agree with the general
form found in Ref. [19] required by the second law of
thermodynamics.
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Since CVE currents are nondissipative and occur in equi-
librium the collision kernel does not appear in these results
directly. However, it is essential for determining the
equilibrium distribution function which must obey
C½feq� ¼ 0. The H theorem we proved ensures that such
a state exists.
In summary, we formulated a chiral kinetic theory

Lorentz invariant to OðℏÞ with collisions, where we
discovered a new contribution to currents due to the
colliding particles’ side jumps and found the corresponding
nontrivial Lorentz transformation of the distribution func-
tion. We proved that the theory obeys Boltzmann’s H
theorem and determined the values of the transport coef-
ficients of the chiral vortical effect. An important question
is how the theory couples to external electromagnetic
fields, and it will be considered elsewhere. Another natural
next step is to apply the theory to study the dissipative
transport or nonhydrodynamic response (see, e.g.,
Refs. [20,21]), where collision terms play a more direct
role. These and other open questions we leave to future
research.
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