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The effect of a constant applied external force, induced for instance by an electric or gravitational field,
on the dispersion of Brownian particles in periodic media with spatially varying diffusivity, and thus
mobility, is studied. We show that external forces can greatly enhance dispersion in the direction of the
applied force and also modify, to a lesser extent and in some cases nonmonotonically, dispersion
perpendicular to the applied force. Our results thus open up the intriguing possibility of modulating the
dispersive properties of heterogeneous media by using externally applied force fields. These results are
obtained via a Kubo formula that can be applied to any periodic advection diffusion system in any spatial
dimension.
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In diverse systems ranging from fluid mechanics,
hydrology, and soft matter to solid state physics, at
mesoscopic length and time scales, the dynamics of tracer
particles is described by stochastic differential equations
(SDEs) and their associated Fokker-Planck equations
[1–3]. In heterogeneous media, the local transport coef-
ficients such as the diffusivity and the mobility can vary in
space depending on the local material properties. In a
locally isotropic material where a uniform force F acts on a
tracer particle, the probability density function (PDF)
pðx; tÞ for the tracer position at time t obeys

∂tpðx; tÞ ¼ ∇ · ½κðxÞ∇p − βκðxÞFp�: ð1Þ

The first term on the right-hand side of Eq. (1) above
corresponds to diffusion with a spatially varying diffusion
constant. The second term represents the drift due to a
constant applied external force and the term βκðxÞ ¼ μðxÞ
is the local mobility. The factor of the inverse temperature β
results from the local Einstein relation between mobility
and diffusivity. Physical examples include charge carriers
in heterogeneous media, where μðxÞ is proportional to the
local electrical conductivity, in the presence of an external
electric field, as well as colloidal diffusion in porous media,
with local diffusivity κðxÞ, with an external field induced by
gravitational or buoyancy forces. Here, we study the effect
that a constant external applied field has on the late time
dispersion as characterized by the effective drift of a cloud
of tracer particles

Vi ¼ lim
t→∞

hXiðtÞ − Xið0Þi
t

ð2Þ

[where XðtÞ denotes the position of a tracer particle
and h� � �i denotes ensemble averaging] and the effective
diffusivity

Dii ¼ lim
t→∞

h½XiðtÞ − Xið0Þ�2ic
2t

ð3Þ

[c denotes the connected part, thus the variance of the
displacement XiðtÞ − Xið0Þ] characterizing the dispersion
of the cloud about its mean position. Effective transport
coefficients are important for estimating the spread of
pollutants and chemical reaction times [4].
When F ¼ 0, the problem of determining Dii and Vi

dates back to Maxwell [5], where the equivalent problem
of determining the dielectric constant of heterogeneous
media was addressed. The Wiener bounds [6] state that
ðκ−1Þ−1 ≤ D ≤ κ̄, where the overbar indicates spatial aver-
aging. In higher dimensions there are few exact results [7]
but numerous approximations schemes exist [8–12].
However, the case where there is a finite external force
appears not to have been studied and in this Letter we will
address the force’s effect on the dispersion of tracer
particles.
To gain a flavor for the phenomenology of this problem

we consider diffusion in a two-dimensional medium, where
κðx; yÞ is shown in Fig. 1(a), with an applied force F
oriented in the x direction. We show in Fig. 1(c) the results
of numerical simulations of the corresponding SDE for the
quantities Dxx;Dyy, and Vx=βF. At zero force, all the
quantities shown are equal; this is a result of the Stokes-
Einstein relation Dxx ¼ β∂FVx, which holds only when
F ¼ 0 (see the Supplemental Material [13]). At small F
upon increasing F, we see that bothDxx and Vx=F decrease
while Dyy increases. As F increases further, Vx=F con-
tinues to decrease monotonically; however, Dxx and Dyy
attain minimal and maximal values, respectively, and
eventually cross. This remarkable behavior shows that
the fast and slow directions of dispersion can be inter-
changed by an applied force and that DyyðFÞ is a non-
monotonic function. In Fig. 1(d), we see that Dxx grows as
F2 at large forces and can thus be made arbitrarily large
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(thus exceeding the upper Wiener bound for the forceless
case), giving rise to force-induced dispersion enhancement.
The key difference between systems with and without an
external force is that in the latter case the steady state
probability distribution Psðx; yÞ on the periodic unit cell of
the system is constant, whereas in the presence of the field
it becomes nontrivial as shown in Fig. 1(b).
To explain these results we will derive a Kubo-type

formula for the transport coefficients for general Fokker-
Planck equations with arbitrary periodic diffusion tensors
and advection fields. This formula generalizes a number of
existing results for convection by incompressible velocity
fields with constant molecular diffusivity as in the case
of Taylor dispersion [16]. Examples include diffusion in
Rayleigh-Bénard convection cells [17–19], diffusion
in frozen turbulent flows [20], and transport by a fluid
in porous media [21–24]. Our formula also encapsulates
results for diffusion in periodic potentials [25–29]. In one
dimension, results on diffusion in periodic potentials plus
constant forces have been derived [30–34], as well as the
more general case where the noise amplitude is a periodic
function of position [35–37].
The Kubo formula we derive here is valid in any

dimension. The terms in the Kubo formula can be analyti-
cally evaluated when the diffusivity varies only in one
direction, and we give analytical results for such stratified

systems. We also solve the generic problem analytically
in the limit of large forces, proving that the coefficient of
Dii, where i is the direction of the force, is generically
proportional to F2. Finally, the Kubo formula can be
evaluated by solving a set of associated partial differential
equations numerically (see the Supplemental Material
[13]); the excellent agreement between this calculation
and the simulations is shown in Figs. 1(c) and 1(d).
Kubo formula for the dispersion.—Consider the general

Fokker-Planck equation

∂tp ¼
Xd
i¼1

∂xi

�
−uiðxÞpþ

Xd
j¼1

½κijðxÞp�
�

¼ Lxp; ð4Þ

where κijðxÞ is a local (symmetric) diffusion tensor, uðxÞ is
the drift field, and Lx is the transport operator. Our only
assumption in the following is that the fields uiðxÞ and
κijðxÞ are periodic in space. Let Ω denote the fundamental
unit cell of the periodic structure. We call pðx; tjyÞ the
propagator of the stochastic process in infinite space,
defined as the solution of Eq. (4) in infinite space with
the initial condition pðx; 0jyÞ ¼ δðx − yÞ. We distinguish
this infinite space propagator pðx; tjyÞ from the propagator
calculated with periodic boundary conditions on the boun-
daries of Ω, denoted Pðx; tjyÞ, and representing the
probability density to observe a particle at time t at a
position x modulo an integer number of translations along
the lattice vectors of the periodic structure. Finally, we
define PsðxÞ ¼ limt→∞Pðx; t; jyÞ as the stationary PDF of
the particles with periodic boundary conditions.
In the Ito prescription, the SDE corresponding to the

Fokker-Planck equation (4) in the direction i [2,3] is

dXi ¼ uiðXðtÞÞdtþ
Xd
j¼1

½κ1=2ðXðtÞÞ�ijdWj; ð5Þ

where κ1=2 represents the square-root matrix of the positive
symmetric matrix κ. The noise increments dWi are
Gaussian, independent, and of zero mean and are only
correlated at equal times as hdWidWji ¼ 2δijdt. Ensemble
averaging Eq. (5) yields the Stratonovich result [38]

Vi ¼
Z
Ω
dxPsðxÞuiðxÞ: ð6Þ

To calculate the effective diffusivity we first substract uidt
from both sides of Eq. (5), integrate over time, square both
sides of the resulting equation, and then average to find

h½XiðtÞ − Xið0Þ�2i þ
Z

t

0

dt1

Z
t

0

dt2huiðXðt1ÞÞuiðXðt2ÞÞi

− 2

Z
t

0

dt0hfXiðtÞ − Xiðt0Þ þ Xiðt0Þ − Xið0ÞguiðXðt0ÞÞi

¼ 2t
Z
Ω
dxPsðxÞκiiðxÞ: ð7Þ
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FIG. 1 (color online). (a) The 2D periodic diffusivity field
κðx; yÞ ¼ κ0½1þ 0.8 cosð2πx=LÞ cosð2πy=LÞ�, in units of κ0 on
the fundamental rectangular unit cell. The arrow indicates the
direction of the external force. (b) Stationary PDF in the
diffusivity field shown in (a) with an external force of magnitude
βFL ¼ 10. (c) Components Dxx and Dyy of the effective
diffusion tensor predicted by Eqs. (18) and (19) and the
normalized effective drift Vx=βF from Eq. (6) (lines) along with
simulations results for the SDE (5) (symbols). (d) Same as (c)
with different scales. The dashed line represents the behavior
Dxx ≃ cF2 with the coefficient c predicted by Eq. (23).
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The average of the right-hand side of Eq. (7) follows from
the independence of the dWi at different time steps.
Exploiting the periodicity of the field uðxÞ, we can evaluate
the second term of Eq. (7) for t1 < t2 as

huiðXðt1ÞÞuiðXðt2ÞÞi ¼
Z Z

Ω
dx1dx2uiðx2Þuiðx1Þ

× Pðx2; t2 − t1jx1ÞPsðx1Þ: ð8Þ

The second line of Eq. (7) contains the term [39]

h½XiðτÞ − Xið0Þ�uiðXð0ÞÞi

¼
Z
Rd

dx
Z
Ω
dypðx; τjyÞPsðyÞðxi − yiÞuiðyÞ: ð9Þ

Differentiating with respect to τ, using Eq. (4) and
integrating by parts over x, we obtain

∂τh½XiðτÞ − Xið0Þ�uiðXð0ÞÞi

¼
Z
Ω
dyPsðyÞuiðyÞ

Z
Rd

dx

�
uiðxÞpðx; τjyÞ

−
Xd
j¼1

∂xj ½κijðxÞpðx; τjyÞ�
�
: ð10Þ

Finally, exploiting the periodicity of the field u, we can
replace the integral over x over the infinite space by an
integral over the unit cellΩ if one replaces the infinite space
propagator p by the propagator with periodic boundary
conditions P, yielding for any t > t0 [40]

∂th½XiðtÞ − Xiðt0Þ�uiðXðt0ÞÞi

¼
Z
Ω
dx

Z
Ω
dyuiðyÞuiðxÞPðx; t − t0jyÞPsðyÞ: ð11Þ

The last term to be computed in Eq. (7) is

h½XiðtÞ − Xið0Þ�uiðXðtÞÞi

¼
Z
Rd

dx
Z
Ω
dypðx; tjyÞPsðyÞðxi − yiÞuiðxÞ: ð12Þ

Because of the periodicity, we can exchange the integration
domains of y and x in this equation. We now use the
backward Fokker-Planck equation [3] ∂tpðx; tjyÞ ¼ L†

yp
(where L† is the adjoint of the transport operator L) to find

∂th½XiðtÞ − Xið0Þ�uiðXðtÞÞi

¼
Z
Ω
dx

Z
Rd

dy½L†
ypðx; tjyÞ�PsðyÞðxi − yiÞuiðxÞ: ð13Þ

Using the definition of the adjoint operator, we write

∂th½XiðtÞ − Xið0Þ�uiðXðtÞÞi

¼
Z
Rd

dy
Z
Ω
dxuiðxÞpðx; tjyÞLyfPsðyÞðxi − yiÞg: ð14Þ

Again exploiting the periodicity of u and explicitly
calculating LyfPsðyÞðxi − yiÞg gives

∂th½XiðtÞ − Xið0Þ�uiðXðtÞÞi

¼
Z
Ω
dxuiðxÞ

Z
Ω
dyPðx; tjyÞ

�
Js;iðyÞ

−
Xd
j¼1

∂yj ½κijðyÞPsðyÞ�
�
; ð15Þ

where JsðyÞ is the local current in the stationary state at
position y, given by

Js;iðyÞ ¼ uiðyÞPsðyÞ −
Xd
j¼1

∂yj ½κijðyÞPsðyÞ�: ð16Þ

Finally, all the terms in Eq. (7) can be evaluated by using
Eqs. (9), (11), and (15). Taking the large time limit, we
obtain the Kubo formula for the effective diffusion tensor

Dii ¼
Z
Ω
dyPsðyÞκiiðyÞ

þ
Z Z

Ω
dxdyuiðxÞGðxjyÞ½2Js;iðyÞ − uiðyÞPsðyÞ�;

ð17Þ

where GðxjyÞ ¼ R∞
0 dtfPðx; tjyÞ − PsðxÞg is the pseudo-

Green function [41] of L on Ω. Equation (17) gives in an
explicit way the dispersion properties in terms of quantities
that are defined at the level of an individual cell Ω, with
periodic boundary conditions. We may reexpress Dii by
introducing fðxÞ, the solution of

LxfiðxÞ ¼ −2Js;iðxÞ þ uiðxÞPsðxÞ

þ PsðxÞ
Z
Ω
dy½2Js;iðyÞ − uiðyÞPsðyÞ�; ð18Þ

again with periodic boundary conditions onΩ, and with the
integral condition

R
Ω dxfðxÞ ¼ 0. The diffusion tensor is

then given by

Dii ¼
Z
Ω
dxfPsðxÞκiiðxÞ þ uiðxÞfiðxÞg: ð19Þ

Nonequilibrium effects are manifested in Eq. (17) by the
presence of the local currents of the stationary state,
generalizing similar Kubo formulas derived for equilibrium
problems. In the case of transport by incompressible fluid
flows, PsðxÞ is uniform, Js is proportional to the flow u,
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and one recovers the equations describing dispersion in
incompressible hydrodynamic flows [compare, for exam-
ple, Eqs. (18) and (19) to Eqs. (35) and (48) of Ref. [24]].
Periodic diffusivity with an external uniform force.—We

now focus on advection-diffusion systems described by
Eq. (1), which fall in the class of the general equation (4)
with

κijðxÞ ¼ δijκðxÞ; uðxÞ ¼ κðxÞβFþ∇κðxÞ: ð20Þ

The effective dispersion tensor Dii can be obtained by
solving numerically the partial differential equations (18)
and (19), leading to the results on Fig. 1, which compare
very well to numerical simulations of the SDE (5).
Stratified media.—In systems where the local diffusivity

varies only in one dimension, κðx; yÞ ¼ κðxÞ as illustrated
in Fig. 2(a); f depends only on x and can be calculated
analytically (see the Supplemental Material [13]). For
vanishing forces, the diffusivity tensor reads

Dxx ¼ 1=κ−1; Dyy ¼ κ̄; Dxy ¼ 0 ðjFj → 0Þ:
ð21Þ

Here, the anisotropy of the dispersion is imposed by the
anisotropy of the field κ; from Jensen’s inequality we see
that Dxx ≤ Dyy, indicating that dispersion is faster in the
direction parallel to the strata of the medium [Fig. 2(b)]. For
large forces however we find that

Dij ¼ ðκ−1Þ−1
�
δij þ

FiFj

jF · exj2
�

κ−2

ðκ−1Þ2
− 1

��
; ð22Þ

so the dispersion becomes larger in the direction parallel to
the force than in the perpendicular direction [42]. The
dispersion is highly sensitive to the projection of the force
normal to the strata [Fig. 2(c)], and the diffusion coef-
ficients in the planes of the strata diverge when F is in the
plane of the strata (in fact, they grow as jFj2).

Force induced dispersion enhancement in 2D.—
Consider the general 2D problem in the case of large
forces. For large forces, it is natural to suppose that the
equilibration time in the direction (here x) of the force is
much shorter than in the other direction. We thus make
the quasistatic approximation Pðx; y; tÞ≃ πðy; tÞPsðxjyÞ,
where PsðxjyÞ ∼ κ−1ðx; yÞ is the stationary probability to
observe x given the value of y. An effective Fokker-Planck
equation can then be derived for the PDF πðy; tÞ by
integrating over x, and using Eqs. (18) and (19), to obtain
(see the Supplemental Material [13])

Dxx ¼
½βFRðLÞ�2
WðLÞ

Z
L

0

dy

�
WðyÞ
WðLÞ −

RðyÞ
RðLÞ

�
2

e−ln κðyÞ; ð23Þ

where L is the length of the period in the direction y, the
notation ḡðyÞ representing uniform spatial averaging over x
for any function gðx; yÞ, and where

RðyÞ ¼
Z

y

0

dueln κðuÞ; WðyÞ ¼
Z

y

0

duκ−1ðuÞeln κðuÞ:
ð24Þ

Equation (23) shows that local heterogeneities generically
give rise to diffusion coefficients scaling as the square of
the force for large forces, implying that the force-induced
diffusivity can be much larger than the microscopic
diffusion coefficients. Quadrature of the integrals in
Eq. (23) gives a coefficient of F2 that is in agreement
with the simulations, as seen in Fig. 1(d).
Conclusion.—Taylor dispersion [16] is a textbook exam-

ple of a phenomenon where spatial variations of a time-
independent compressible velocity field, along with locally
constant molecular diffusivity, lead to enhanced dispersion.
Here, external uniform forces lead to increased dispersion
in the direction of the force. The mechanism is similar to
that behind Taylor dispersion in that particles with different
trajectories experience very different advection by the
applied force due to its coupling to the local mobility or
diffusivity. We have also seen that an external force can
nonmonotonically modify the dispersion in the direction
perpendicular to the applied force. This surprising effect is
due to the fact that an applied force yields a nonuniform
stationary distribution over the fundamental periodic cell. It
is possible that one may construct experimental systems
where the effects predicted here could be observed.
Periodic optical potentials, in which colloidal particles
can be tracked, can be generated by lasers [43,44] and it
would be interesting to see if experimental realizations of
media with spatially modulated diffusivities could be
similarly produced in order to observe the effects predicted
in this Letter. Finally, we stress that the results here can be
applied to any periodic advection-diffusion system and thus
have a wide range of applicability. For instance, one can use
the formulas to study the dispersion in periodic potentials in
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FIG. 2 (color online). (a) The 2D periodic diffusivity field
for our example of stratified medium, κðx; yÞ ¼ κ0½1þ
0.95 cosð2πx=LÞ�, shown in units of κ0 on the fundamental
rectangular unit cell. (b),(c) Cloud of particles diffusing in the
local diffusivity field shown in (a) at a time t ¼ 10L2=κ0. In (b)
there is no external force and in (c) the force has a magnitude
given by βFL ¼ 100 and acts in the direction indicated by the
arrow. The ellipses represent the region in which 95% of the
points should fall and are determined from Eqs. (21) and (22).
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any dimension in the presence of an external force [30,31]
(even with varying local mobility) as well as in systems
with no local detailed balance, such as active particle
systems.
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