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Quantum coherence is an essential ingredient in quantum information processing and plays a central role
in emergent fields such as nanoscale thermodynamics and quantum biology. However, our understanding
and quantitative characterization of coherence as an operational resource are still very limited. Here we
show that any degree of coherence with respect to some reference basis can be converted to entanglement
via incoherent operations. This finding allows us to define a novel general class of measures of coherence
for a quantum system of arbitrary dimension, in terms of the maximum bipartite entanglement that can be
generated via incoherent operations applied to the system and an incoherent ancilla. The resulting measures
are proven to be valid coherence monotones satisfying all the requirements dictated by the resource theory
of quantum coherence. We demonstrate the usefulness of our approach by proving that the fidelity-based
geometric measure of coherence is a full convex coherence monotone, and deriving a closed formula for it
on arbitrary single-qubit states. Our work provides a clear quantitative and operational connection between
coherence and entanglement, two landmark manifestations of quantum theory and both key enablers for
quantum technologies.
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Introduction.—Coherence is a fundamental aspect of
quantum physics that encapsulates the defining features of
the theory [1], from the superposition principle to quantum
correlations. It is a key component in various quantum
information and estimation protocols and is primarily
accountable for the advantage offered by quantum tasks
versus classical ones [2,3]. In general, coherence is an
important physical resource in low-temperature thermody-
namics [4–8], for exciton and electron transport in bio-
molecular networks [9–14], and for applications in
nanoscale physics [15,16]. Experimental detection of
coherence in living complexes [17,18] and creation of
coherence in hot systems [19] have also been reported.
While the theory of quantum coherence is historically

well developed in quantum optics [20–27], a rigorous
framework to quantify coherence for general states in
information theoretic terms has only been attempted
recently [14,26,28–31]. This framework is based on iden-
tifying the set of incoherent states and a class of “free”
operations, named incoherent quantum channels, that map
the set onto itself [14,28]. The resulting resource theory of
coherence is in direct analogy with the resource theory of
entanglement [32], in which local operations and classical
communication are the free operations that map the set of
separable states onto itself [33]. Within such a framework
for coherence, one can define suitable measures that vanish
for any incoherent state, and satisfy specific monotonicity
requirements under incoherent channels. Measures that
respect these conditions gain the attribute of coherence

monotones, in analogy with entanglement monotones [34].
Examples of coherence monotones include the relative
entropy and the l1-norm of coherence [28]. Intuitively, both
coherence and entanglement capture quantumness of a
physical system, and it is well known that entanglement
stems from the superposition principle, which is also the
essence of coherence. It is then legitimate to ask how can
one resource emerge quantitatively from the other [24,26].
In this Letter, we provide a mathematically rigorous

approach to resolve the above question, using a common
frame to quantify quantumness in terms of coherence and
entanglement. In particular, we show that any nonzero
amount of coherence in a system S can be converted to
(distillable) entanglement between S and an initially
incoherent ancilla A, by means of incoherent operations.
This allows us to formulate a novel, general method to
quantify coherence in terms of entanglement (see Fig. 1).
Namely, we prove that, given an arbitrary set of entangle-
ment monotones fEg, one can define a corresponding class
of coherence monotones fCEg that satisfy all the require-
ments of Ref. [28]. The input coherence CE of S is defined
as the maximum output entanglement E over all incoherent
operations on S and A. We explicitly evaluate the maxi-
mization in some relevant instances, defining novel coher-
ence monotones such as the fidelity-based geometric
measure of coherence. These results provide powerful
advances for the operational quantification of coherence.
Characterizing coherence.—For an arbitrary fixed refer-

ence basis fjiig, the incoherent states are defined as [28]
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σ ¼
X
i

pijiihij; ð1Þ

where pi are probabilities. Any state which cannot be
written as above is defined coherent [28]. Note that, unlike
other resources in information theory, coherence is basis
dependent. The reference basis with respect to which
coherence is measured depends on the physical problem
under investigation; it is, e.g., the energy basis for transport
phenomena in engineered and biological domains [13], or
the eigenbasis of the generator of an unknown phase shift in
quantum metrology [2].
A completely positive trace preserving map Λ is said to

be an incoherent operation if it can be written as

Λ½ρ� ¼
X
l

KlρK
†
l ; ð2Þ

where the defining operators Kl, called incoherent Kraus
operators, map every incoherent state to some other
incoherent state, i.e., KlIK

†
l ⊆ I , where I is the set of

incoherent states.
Following established notions from entanglement theory

[32,35–37], Baumgratz et al. proposed the following
postulates for a measure of coherence CðρÞ in Ref. [28]:
(C1) CðρÞ ≥ 0, and CðσÞ ¼ 0 if and only if σ ∈ I . (C2)
CðρÞ is nonincreasing under incoherent operations, i.e.,
CðρÞ ≥ CðΛ½ρ�Þ with Λ½I � ⊆ I . (C3) CðρÞ is nonincreas-
ing on average under selective incoherent operations, i.e.,
CðρÞ ≥ P

lplCðςlÞ, with probabilities pl ¼ Tr½KlρK
†
l �,

states ςl ¼ KlρK
†
l =pl, and incoherent Kraus operators Kl

obeying KlIK
†
l ⊆ I . (C4) CðρÞ is a convex function of

density matrices, i.e., CðPipiρiÞ ≤
P

ipiCðρiÞ. Note that
conditions (C3) and (C4) automatically imply condition
(C2). The reason we listed all conditions above is that

(similar to entanglement measures) there might exist mean-
ingful quantifiers of coherence which satisfy conditions
(C1) and (C2), but for which conditions (C3) and (C4) are
either violated or cannot be proven. Following the analo-
gous notion from entanglement theory, we call a quantity
which satisfies conditions (C1), (C2), and (C3) a coherence
monotone.
Examples of functionals that satisfy all the four proper-

ties mentioned above include the l1-norm of coherence
[28] Cl1ðρÞ ¼

P
i≠jjρijj and the relative entropy of coher-

ence [28]

CrðρÞ ¼ min
σ∈I

Hðρ∥σÞ; ð3Þ

with the quantum relative entropy Hðρ∥ςÞ ¼ Tr½ρlog2ρ�−
Tr½ρlog2ς�. As was shown in Ref. [28], the relative entropy
of coherence can also be written as CrðρÞ ¼ HðρdÞ −HðρÞ,
where ρd is the diagonal part of the density matrix ρ in the
reference basis fjiig and H is the von Neumann entropy.
Bipartite coherence.—We first extend the framework of

coherence to the bipartite scenario (see also Ref. [38]); the
following definitions extend straightforwardly to multipar-
tite systems. In particular, for a bipartite system with two
subsystems X and Y, and with respect to a fixed reference
product basis fjiiX ⊗ jjiYg, we define bipartite incoherent
states as follows:

ρXY ¼
X
k

pkσ
X
k ⊗ τYk : ð4Þ

Here, pk are probabilities and the states σXk and τYk are
incoherent states on the subsystem X and Y, respectively,
i.e., σXk ¼ P

ip
0
ikjiihijX and τYk ¼ P

jp
00
jkjjihjjY for proba-

bilities p0
ik and p

00
jk. Note that the states in Eq. (4) are always

separable.
We next define bipartite incoherent operations as in

Eq. (2), with incoherent Kraus operators Kl, such that
KlIK

†
l ⊆ I , where I is now the set of bipartite incoherent

states defined in Eq. (4). An example of bipartite incoherent
operation is the two-qubit CNOT gate UCNOT. It is not
possible to create coherence from an incoherent two-qubit
state by using the CNOT gate, since it takes any pure
incoherent state jii ⊗ jji to another pure incoherent state,
UCNOTðjii ⊗ jjiÞ ¼ jii ⊗ jmodðiþ j; 2Þi. The CNOT gate
can be used, however, to create entanglement; e.g., it is well
known that the stateUCNOTðjψi ⊗ j0iÞ is entangled for any
coherent state jψi [3].
Converting coherence to entanglement.—Referring to

Fig. 1, we say that the coherence in the initial state ρS of a
(finite-dimensional) system S can be converted to entan-
glement via incoherent operations if, by attaching an ancilla
A initialized in a reference incoherent state j0ih0jA, the final
system-ancilla state ΛSA½ρS ⊗ j0ih0jA� is entangled for
some incoherent operation ΛSA. Note that incoherent
system states σS cannot be used for conversion to entangled

FIG. 1 (color online). (a) Incoherent operations cannot generate
entanglement from incoherent input states. (b) Conversely, we
show that any nonzero coherence in the input state of a system S
can be converted to entanglement via incoherent operations on S
and an incoherent ancilla A. Input coherence and output entan-
glement are quantitatively equivalent: For any entanglement
monotone E, the maximum entanglement generated between S
and A by incoherent operations defines a faithful coherence
monotone CE on the initial state of S.
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states in this way, since for any incoherent state σS the state
ΛSA½σS ⊗ j0ih0jA� will be of the form given in Eq. (4), and
thus separable.
Entanglement can instead be generated by incoherent

operations if the initial ρS is coherent, as in the two-qubit
CNOT example. It is then natural to ask: Can any nonzero
amount of coherence be converted to entanglement via
incoherent operations? To answer this, we first consider
distance-based measures of entanglement ED and coher-
ence CD [28,35–38]:

EDðρÞ ¼ min
χ∈S

Dðρ; χÞ; CDðρÞ ¼ min
σ∈I

Dðρ; σÞ: ð5Þ

Here, S is the set of separable states and I is the set of
incoherent states. Moreover, we demand that the distanceD
be contractive under quantum operations,

DðΛ½ρ�;Λ½ς�Þ ≤ Dðρ; ςÞ ð6Þ

for any completely positive trace preserving map Λ. This
implies that ED does not increase under local operations
and classical communication [35,36], and CD does not
increase under incoherent operations [28]. Equipped with
these tools we are now in position to present the first result
of this Letter.
Theorem 1: For any contractive distanceD, the amount

of (distance-based) entanglement ED generated from a state
ρS via an incoherent operation ΛSA is bounded above by its
(distance-based) coherence CD:

ES∶A
D ðΛSA½ρS ⊗ j0ih0jA�Þ ≤ CDðρSÞ: ð7Þ

Proof.—Let σS be the closest incoherent state to ρS, i.e.,
CDðρSÞ ¼ DðρS; σSÞ. The contractivity of the distance D
further implies the equality: DðρS; σSÞ ¼ DðρS ⊗ j0ih0jA;
σS ⊗ j0ih0jAÞ. In the final step, note that the application of
an incoherent operation ΛSA to the incoherent state σS ⊗
j0ih0jA brings it to another incoherent—and thus separable
—state. Applying Eq. (6) and combining the aforemen-
tioned results we arrive at the desired inequality: CDðρSÞ ≥
DðΛSA½ρS ⊗ j0ih0jA�;ΛSA½σS ⊗ j0ih0jA�Þ ≥ ES∶A

D ðΛSA½ρS ⊗
j0ih0jA�Þ. □

This result provides a strong link between the resource
frameworks of entanglement and coherence. An even
stronger link exists when choosing specifically D as the
relative entropy. The corresponding quantifiers are the
relative entropy of entanglement Er [35], and the relative
entropy of coherence Cr [28] introduced in Eq. (3).
Importantly, the inequality (7) can be saturated for these
measures if the dimension of the ancilla is not smaller than
that of the system, dA ≥ dS. In this case there always exists
an incoherent operation ΛSA such that

ES∶A
r ðΛSA½ρS ⊗ j0ih0jA�Þ ¼ CrðρSÞ: ð8Þ

To prove this statement, we consider the unitary operation

U ¼
XdS−1
i¼0

XdS−1
j¼0

jiihijS ⊗ jmodðiþ j; dSÞihjjA

þ
XdS−1
i¼0

XdA−1
j¼dS

jiihijS ⊗ jjihjjA: ð9Þ

Note that for two qubits this unitary is equivalent to the
CNOT gate with S as the control qubit and A as the target
qubit. It can be seen by inspection that this unitary is
incoherent (i.e., the state ΛSA½ρSA� ¼ UρSAU† is incoherent
for any incoherent state ρSA), and maps the state ρS ⊗
j0ih0jA to the state

ΛSA½ρS ⊗ j0ih0jA� ¼
X
i;j

ρijjiihjjS ⊗ jiihjjA; ð10Þ

where ρij are the matrix elements of ρS ¼ P
i;jρijjiihjjS. In

the next step we use the fact that for any quantum state ςSA

the relative entropy of entanglement is bounded below as
follows [39]: ES∶A

r ðςSAÞ ≥ HðςSÞ −HðςSAÞ. Applied to the
state ΛSA½ρS ⊗ j0ih0jA�, this inequality reduces to

ES∶A
r ðΛSA½ρS ⊗ j0ih0jA�Þ ≥ H

�X
i

ρiijiihijS
�
−HðρSÞ:

ð11Þ

Noting that the right-hand side of this inequality is equal to
the relative entropy of coherence CrðρSÞ [28], we obtain
ES∶A
r ðΛSA½ρS ⊗ j0ih0jA�Þ ≥ CrðρSÞ. The proof of Eq. (8) is

complete by combining this result with Theorem 1.
The results presented above also hold for the distillable

entanglementEd. Namely, the relative entropy of coherence
Cr also serves as an upper bound for the conversion to
distillable entanglement via incoherent operations, and the
equality in Eq. (8) still holds if Er is replaced by Ed, and the
incoherent unitary of Eq. (9) is applied. This follows from
Theorem 1, together with the fact that distillable entangle-
ment admits the following bounds [40,41]: HðςSÞ−
HðςSAÞ ≤ ES∶A

d ≤ ES∶A
r .

This shows that the degree of (relative entropy of)
coherence in the initial state of S can be exactly converted
to an equal degree of (distillable or relative entropy of)
entanglement between S and the incoherent ancilla A by a
suitable incoherent operation, that is a generalized CNOT

gate. We can now settle the general question posed above.
Theorem 2: A state ρS can be converted to an entangled

state via incoherent operations if and only if ρS is coherent.
Proof.—If ρS is incoherent, it cannot be converted to an

entangled state via incoherent operations by Theorem 1.
Conversely, if ρS is coherent, it has nonzero relative entropy
of coherence CrðρSÞ > 0. By Eq. (8), there exists an
incoherent operation ΛSA leading to nonzero relative
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entropy of entanglement ES∶A
r ðΛSA½ρS ⊗ j0ih0jA�Þ > 0,

concluding the proof. □

Quantifying coherence with entanglement.—We are
ready to present the central result of the Letter.
Reversing the perspective, Theorem 1 can also be seen
as providing a lower bound on distance-based measures of
coherence through conversion to entanglement: precisely,
the coherence degree CD of a state ρS is always bounded
below by the maximal entanglement degree ED generated
from it by incoherent operations.
Going now beyond the specific setting of distance-based

measures, we will show that such a maximization of the
output entanglement, for any fully general entanglement
monotone, leads to a quantity which yields a valid
quantifier of input coherence in its own right. We specifi-
cally define the family of entanglement-based coherence
measures fCEg as follows:

CEðρSÞ ¼ lim
dA→∞

n
sup
ΛSA

ES∶AðΛSA½ρS ⊗ j0ih0jA�Þ
o
: ð12Þ

Here, E is an arbitrary entanglement measure and the
supremum is taken over all incoherent operations ΛSA [42].
It is crucial to benchmark the validity of CE for any E as

a proper measure of coherence. Remarkably, we find that
CE satisfies all the aforementioned conditions (C1)–(C3)
given an arbitrary entanglement monotone E, with the
addition of (C4) if E is convex as well. We, namely, get the
following result:
Theorem 3: CE is a (convex) coherence monotone for

any (convex) entanglement monotone E.
Proof.—Using the arguments presented above it is easy

to see that CE is nonnegative, and zero if and only if the
state ρS is incoherent. Moreover, CE does not increase
under incoherent operations ΛS performed on the system S.
This can be seen directly from the definition of CE in
Eq. (12), noting that an incoherent operation ΛS on the
system S is also incoherent with respect to SA. The proof
that CE further satisfies condition (C3) is presented in the
Supplemental Material [43]. There we also show that CE is
convex for any convex entanglement monotone E; i.e., (C4)
is fulfilled as well in this case. □

These powerful results complete the parallel between
coherence and entanglement, de facto establishing their full
quantitative equivalence within the respective resource
theories. Thanks to Theorem 3, one can now use the
comprehensive knowledge acquired in entanglement theory
in the last two decades [34,35,37,44] to address the
quantification of coherence in a variety of operational
settings, and to define and validate physically motivated
coherence monotones. For instance, CE as defined by
Eq. (12) amounts to the previously defined relative entropy
of coherence [28], if E is the relative entropy of entangle-
ment or the distillable entanglement.

Furthermore, we can now focus on the relevant case of E
being the geometric entanglement [45,46] Eg, defined for a
bipartite state ρ as EgðρÞ ¼ 1 −maxχ∈SFðρ; χÞ, where the
maximum is taken over all separable states χ ∈ S, and
Fðρ; ςÞ ¼ ½Trð ffiffiffi

ρ
p

ς
ffiffiffi
ρ

p Þ1=2�2 is the Uhlmann fidelity. The
geometric entanglement coincides with its expression
obtained via convex roof [46,47], EgðρÞ ¼
min

P
ipiEgðjψ iiÞ, where the minimum is over all decom-

positions of ρ ¼ P
ipijψ iihψ ij. In the Supplemental

Material [43], we show that the geometric measure of
coherence Cg, associated to Eg via Eq. (12), can be
evaluated explicitly and amounts to CgðρÞ ¼
1 −maxσ∈IFðρ; σÞ, where the maximum is taken over
all incoherent states σ ∈ I . The incoherent operation which
attains the maximum in Eq. (12) is again the generalized
CNOT defined by Eq. (9). Because of Theorem 3, since the
geometric measure of entanglement is a full convex
entanglement monotone [37,45], we have just proven that
the geometric measure of coherence Cg is a full convex
coherence monotone obeying (C1)–(C4). This settles an
important question left open in previous literature [28,38].
Remarkably, the geometric measure Cg is also analytically
computable for an arbitrary state ρ of one qubit [43], as
follows:

CgðρÞ ¼
1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4jρ01j2

q �
; ð13Þ

where ρ01 is the off-diagonal element of ρ with respect to
the reference basis. Notice that Cg in this case is a simple
monotonic function of the l1-norm of coherence
[28], Cl1ðρÞ ¼ 2jρ01j.
Some of these results extend to any distance-based

entanglement measure EgðFÞ defined via Eq. (5) with
DgðFÞðρ; ςÞ ¼ g½Fðρ; ςÞ�, where gðFÞ is a nonincreasing
function of the fidelity F. These include the Bures measure
of entanglement [35,36], with gðFÞ ¼ 2ð1 − ffiffiffiffi

F
p Þ, and the

Groverian measure of entanglement [48,49], with
gðFÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1 − F
p

. For any such entanglement EgðFÞ, the
corresponding quantifier of coherence is CgðFÞðρÞ ¼
minσ∈IDgðFÞðρ; σÞ [43], and Theorem 1 holds with equality
for any matching pair EgðFÞ and CgðFÞ [50].
Conclusions.—In this Letter we have established a

rigorous and general framework for the interconversion
between two quantum resources, coherence on one hand,
and entanglement on the other hand, via incoherent
operations. Our framework can be interpreted in both
ways: on one hand, it demonstrates the formal potential
of coherence for entanglement generation (although not
necessarily useful in practical applications, as cheaper
schemes for entanglement creation might be available);
on the other hand, it demonstrates the usefulness of
entanglement to obtain and validate measures of coherence.
Building on this connection, we proposed, in fact, a
family of coherence quantifiers in terms of the maximal
entanglement that can be generated by incoherent
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operations (see Fig. 1). The proposed coherence quantifiers
satisfy all the necessary criteria to be bona fide coherence
monotones [28]. In particular, the relative entropy of
coherence and the geometric measure of coherence have
been (re)defined and interpreted operationally in terms of
the maximum converted distillable and geometric entan-
glement, respectively.
Our framework bears some resemblance with, and may

be regarded as the general finite-dimensional counterpart
to, the established (qualitative and quantitative) equivalence
between input nonclassicality, intended as superposition of
optical coherent states, and output entanglement created by
passive quantum optical elements such as beam splitters
[23,24,26,52]. The results presented here should also be
compared to the scheme for activating distillable entangle-
ment via premeasurement interactions [53–55] from quan-
tum discord, a measure of nonclassical correlations going
beyond entanglement [56,57]. In the latter approach,
which has attracted a large amount of attention recently
[56,58–61], measures of discord in a composite system are
defined in terms of the minimum entanglement created with
an ancillary system via fixed premeasurement interactions
defined as in Eq. (9), where the minimization is over local
unitaries on the system regulating the control bases before
the interaction. By contrast, in this work the reference basis
is fixed, and a maximization of the output entanglement
over all incoherent operations returns a measure of coher-
ence for the initial system. One might combine the two
approaches in order to define a unified framework for
interconversion among coherence, discord, and entangle-
ment, whereby discord-type measures could be interpreted
as measures of bipartite coherence suitably minimized
over local product reference bases (see, e.g., [38,62]).
Exploring these connections further will be the subject
of another work.
The theory of entanglement has been the cornerstone of

major developments in quantum information theory and
has triggered the advancement of modern quantum tech-
nologies. The construction of a physically meaningful and
mathematically rigorous quantitative theory of coherence
can improve our perception of genuine quantumness, and
guide our understanding of nascent fields such as quantum
biology and nanoscale thermodynamics. By uncovering a
powerful operational connection between coherence and
entanglement, we believe the present work delivers a
substantial step in this direction.
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