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The third law of thermodynamics constrains the phase diagram of systems with a first-order quantum
phase transition. For a zero conjugate field, the coexistence curve has an infinite slope at T ¼ 0. If a
tricritical point exists at T > 0, then the associated tricritical wings are perpendicular to the T ¼ 0 plane,
but not to the zero-field plane. These results are based on the third law and basic thermodynamics only, and
are completely general. As an explicit example we consider the ferromagnetic quantum phase transition in
clean metals, where a first-order quantum phase transition is commonly observed.
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First-order phase transitions are ubiquitous in nature, the
solid-to-liquid and liquid-to-gas transitions being the most
commonly observed ones. Another common example of a
first-order transition is the ferromagnetic transition below
the Curie temperature as a function of an external magnetic
field. First-order transitions are characterized by a coex-
istence curve in the phase diagram along which the two
phases coexist in thermodynamic equilibrium. (The coex-
istence curve may be the projection of a higher-dimensional
coexistence manifold into a particular plane in the phase
diagram.)
It has long been known that the curvature of the

coexistence curve is determined by the discontinuities of
certain observables across it. The Clapeyron-Clausius (CC)
equation relates the slope of the coexistence curve in the
pressure-temperature (p-T) plane to the discontinuities of
the entropy and the volume [1],

�
dp
dT

�
H
¼ Δs

Δv
; ð1Þ

where Δs ¼ s1 − s2 and Δv ¼ v1 − v2 with s1;2 and v1;2 as
the specific entropy and volume per particle, respectively,
in the two phases. For definiteness, let 1 and 2 label the
ordered and disordered phases, respectively, and for later
reference we indicate that an appropriate external fieldH, if
any, is held constant in taking the derivative.
The CC equation (1) and its analogs in different planes of

the phase diagram are very general, as they rely only on
basic thermodynamic arguments. In this Letter we show
that for quantum phase transitions, when combined with
the third law of thermodynamics, they provide interesting
constraints on the shape of the phase diagram. We will
consider a pressure-driven transition at T ¼ 0 that is first
order, remains first order at low T, and turns second order at

higher T via a tricritical point (TCP). The schematic phase
diagram in the space spanned by T, p, and H, where H is
the field conjugate to the order parameter, is shown in
Fig. 1. As we will see, the detailed shape of this phase
diagram at low T is constrained by thermodynamics. Our
arguments leading to this conclusion are completely gen-
eral; however, as an explicit example we will discuss the
quantum ferromagnetic transition in clean metals [2].
Another example of a first-order quantum phase transition
with a TCP in the phase diagram is the Ising antiferro-
magnet dysprosium aluminum garnet [3].

FIG. 1 (color online). Schematic phase diagram showing a line
of first-order transitions at low T separated from a line of second-
order transitions at higher T by a TCP. In a nonzero conjugate
field H tricritical wings emerge from the TCP. These are surfaces
of first-order transitions that are bounded by lines of second-order
transitions and terminate in two quantum wing-critical points
(QWCP) in the T ¼ 0 plane.
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We are interested in a system with T, p, and H as
independent variables. Denoting the order parameter byM,
the appropriate thermodynamic potential is the generalized
Gibbs free energy [4]

~G ¼ U − TSþ pV −HM

¼ μN; ð2aÞ

whose differential is

d ~G ¼ −SdT þ Vdp −MdH þ μdN: ð2bÞ
Here S, V, and μ are the system’s entropy, volume, and
chemical potential, respectively, and N is the particle
number. From Eqs. (2) we obtain the Gibbs-Duhem relation

dμ ¼ d~g ¼ −sdT þ vdp −mdH; ð3Þ
where ~g, s, v, and m are the generalized Gibbs free energy,
entropy, volume, and order parameter per particle, respec-
tively. On the coexistence curve the chemical potentials of
the two phases must coincide. Using this condition with
Eq. (3) at fixed external field leads to Eq. (1). An analogous
argument yields

�
dT
dH

�
p
¼ −

Δm
Δs

: ð4Þ

The CC equations (1), (4) are completely general. When
applied to a quantum phase transition, the third law
provides the additional constraint ΔsðT → 0Þ → 0. To be
specific, let us assume that in either phase the entropy
vanishes as sðT → 0Þ ¼ γTn. In particular, if the phases are
Fermi liquids (see below) then n ¼ 1 and γ is the specific-
heat coefficient. For asymptotically low temperatures we
thus have

�
dT
dp

�
H
¼ 1

Tn

Δv
Δγ

; ð5aÞ
�
dT
dH

�
p
¼ −1

Tn

Δm
Δγ

: ð5bÞ

In addition, we obtain from the equilibrium condition in
conjunction with Eq. (2b) a third CC equation,

�
dH
dp

�
T
¼ Δv

Δm
: ð5cÞ

These three CC equations are the basis of our discussion.
Let us start by briefly discussing the obvious coexistence

region in the T-p plane, which is labeled “ordered”
in Fig. 1. The first-order transition across this plane, which
is driven by the external field, does not involve any change

in either entropy or specific volume. We thus have Δs ¼
Δv ¼ 0. Equations (5b), (5c) then imply ðdH=dTÞp ¼
ðdH=dpÞT ¼ 0. This identifies the H ¼ 0 plane as the
locus of the coexistence curves. ðdT=dpÞH¼0, Eq. (5a), is
indeterminate, which is consistent with the fact that any
curve in the H ¼ 0 plane below the transition temperature
is a coexistence curve. The CC equations thus correctly
describe the coexistence plane, but do not provide any
nontrivial information.
This changes as we consider the other coexistence

surfaces, viz., the tricritical wings. Obviously, we have
Δm > 0 across any first-order transition, but now Δs
and Δv will not be zero. To find Δv, we turn to scaling
theory. Scaling is often thought of as valid only at second-
order transitions. However, Fisher and Berker [6] have
shown that finite-size scaling considerations allow for the
definition of a diverging length scale even at a first-
order transition. Consequently, a classical first-order tran-
sition can be considered a limiting case of a second-order
transition, and the homogeneity laws, exponent relations,
etc., that are known from the scaling description of second-
order transitions still hold. This formalism has recently
been generalized to the case of quantum first-order tran-
sitions [7], and we now apply it to the problem under
consideration. Let r ¼ ðp − p�Þ=p� be the dimensionless
distance from the transition at T ¼ 0. Then the generalized
Gibbs free energy obeys a homogeneity law [7]

~gðr;H; TÞ ¼ b−ðdþzÞΦ~gðrbdþz; Hbdþz; TbzÞ: ð6Þ

Here b > 0 is the length scaling parameter, Φ~g is a scaling
function, and we have made use of several exponent values
that characterize a first-order quantum phase transition (see
Ref. [7] for details): z is the relevant dynamical exponent
[8], the inverse correlation length exponent has its largest
possible value 1=ν ¼ dþ z, and the scale dimension of the
field, ½H� ¼ βδ=ν, reflects the fact that the order-parameter
exponents are β ¼ 0, δ ¼ ∞, such that βδ ¼ 1. This is a
generalization of the scaling description of classic first-order
transitions given by Fisher and Berker [6]. Differentiating
~g with respect to r ∝ p, we see that the scaling part of
the specific volume, v ¼ ∂ ~g=∂p ¼ ∂ ~g=∂r, has a zero scale
dimension. This implies a discontinuity of the specific
volume across the transition, and a corresponding δ-function
contribution to the compressibility κ ¼ −ð∂v=∂pÞ=v. This
is in direct analogy to the latent heat at a classical first-order
transition and can be interpreted as a “latent volume” at a
pressure-driven quantum phase transition (QPT); i.e., the
volume changes by a finite amount upon an infinitesimal
change in pressure [9].We also note that differentiating with
respect to r again we obtain κ ∝ jrj−1; see Ref. [6] for an
interpretation of this power-law divergence at a first-order
transition in terms of finite-size scaling. The compressibility
is positive in thermodynamic equilibrium, and we thus have
Δv > 0 across any coexistence curve contained in thewings.
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The only remaining question is the sign of Δγ. For a
transition from an ordered phase to a disordered one, one
would naively expectΔγ < 0.Wewill adopt this expectation
for now and give a more detailed discussion below.
From Eq. (5a) we conclude that ð∂T=∂pÞH < 0; i.e., the

slope of any coexistence curve at fixedH is negative, and it
approaches −∞ as 1=Tn for T → 0. Similarly, Eq. (5b)
yields ð∂T=∂HÞp > 0, and it approaches þ∞ as 1=Tn

for T → 0. This means that the wings are necessarily
perpendicular to the T ¼ 0 plane, and, in particular, the
coexistence curve in zero field has an infinite slope at the
QPT. Finally, Eq. (5c) implies that ð∂H=∂pÞT is positive
and finite, which implies that the wings are tilted in the
direction of the disordered phase and are not perpendicular
to the p axis.
We now turn to an explicit example that illustrates all of

the above considerations, namely, the quantum phase
transition in clean metallic ferromagnets [2,12]. In this
case, the exponent n in Eqs. (5) is n ¼ 1, and the dynamical
exponent z in Eq. (6) is z ¼ 1. There is a second dynamical
exponent z ¼ 3, but for our purposes z ¼ 1 yields the
dominant contribution (see Refs. [2,7] for a detailed
discussion of this point). The order parameter m is the
magnetization, H is the external magnetic field, and the
phase diagram is generically observed to have the topology
shown in Fig. 1. The features discussed above are indeed
universally observed in all cases where the tricritical wings
have been mapped out in detail. As an example, we show
the experimentally determined wings in UGe2 in Fig. 2; for
other examples, see Ref. [2]. Note the extremely sharp drop
of the Curie temperature for pressures above the tricritical

pressure that is apparent in the inset. Also of interest is the
transition inside the ferromagnetic phase (from FM1 to
FM2), which is first order at low temperatures. Our
considerations apply to this transition as well, and the
steep drop of the transition temperature is again consistent
with an infinite slope of the coexistence curve at T ¼ 0.
We now return to the issue of the sign of Δγ, or more

generallyΔs, across the coexistence curve. From Eq. (3) we
see that ð∂s=∂pÞT;H ¼ −ð∂v=∂TÞp;H ¼ −vαp, with αp ¼
ð∂v=∂TÞp=v as the thermal expansion coefficient. An
increase in entropy with increasing pressure thus implies
αp < 0. Returning to Eq. (5a), and remembering that
Δv > 0 since the compressibility is necessarily positive,
we see that a decreasing Curie temperature with increasing
pressure implies a negative thermal expansion coefficient,
and vice versa. Consistent with this, the thermal expansion
coefficient at low T is indeed negative in UGe2 [16],
MnSi [17], and ZrZn2 [18], which all are low-T ferromag-
nets with qualitatively identical phase diagrams. It is
interesting that αp < 0 by itself implies that the high-
pressure phase must be the paramagnetic one. We also note
that the volume is discontinuous if the coexistence curve
is crossed at fixed p as a function of T as well as at fixed T
as a function of p. This is intuitively obvious and also
follows from Eqs. (3), (6). Accordingly, αp at the first-order
transition has a δ-function contribution that reflects the same
latent volume as the corresponding δ-function contribution
to the compressibility. This is consistent with the experiment
by Kabeya et al. [16], who observed a pronounced negative
peak in αp at the transition, which they attributed to a
broadened first-order transition.
While in most quantum ferromagnets hydrostatic pres-

sure destroys the ferromagnetic order, there are systems in
which the opposite occurs. An example is YbCu2Si2, which
is paramagnetic at ambient pressure, but becomes ferro-
magnetic upon the application of hydrostatic pressure of
roughly 10 GPa [19], see Fig. 3. The thermodynamic

FIG. 2 (color online). Measured phase diagram of UGe2, with
the same notation as in Fig. 1. The main figure is adapted from
Ref. [14]; the squares represent data points, the lines and surfaces
are guides to the eye. The inset shows the H ¼ 0 plane with
data from Ref. [15]. Note the extremely steep drop of the
Curie temperature past the tricritical point. The ferromagnetic
phase consists of two phases, FM1 and FM2, separated by a line
of first-order transitions at low temperatures that ends in a
critical point (CP).

FIG. 3 (color online). Temperature-pressure phase diagram of
YbCu2Si2. Ferromagnetism is induced by hydrostatic pressure
p > Pc ≈ 8.25 GPa. From Ref. [19].
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arguments presented above then predict that αp in this
material, at this pressure and at low temperature, must be
positive. The thermal expansion data of Ref. [20] are
consistent with this prediction, although not quite con-
clusive, as they focused on a higher temperature region.
There also are materials where hydrostatic pressure drives
the system away from ferromagnetic order, while uniaxial
stress favors it; an example is UCoAl [21]. This can be
understood by realizing that in many solids the thermal
expansion coefficient is anisotropic to the point of being
positive along some crystal axes, but negative along
others [22].
We finally briefly discuss an explicit equation of state

that has been used to describe the qualitative phase diagram
of metallic quantum ferromagnets and that leads to a
schematic phase diagram as shown in Fig. 1 [25]. It is
derived by minimizing a generalized Landau functional

fðmÞ ¼ −Hmþ rm2 þ wm4 lnðm2 þ T2Þ þ um4 ð7Þ

with respect to the magnetization m. Here m, H, and T are
measured in suitable microscopic units, and r, u, and w are
parameters of the generalized Landau theory. The physical
origin of the term with coupling constant w is due to soft
fermionic excitations that couple to the magnetization; this
has been discussed in detail before [2,26,27] and will not be
repeated here. In zero field, H ¼ 0, the logarithmic term
leads to a first-order transition at r ¼ r1 ¼ we−1−u=w where
the magnetization value is m1 ¼ ffiffiffiffiffi

r1
p

, and to a tricritical
point at T tc ¼ e−u=2w. The coexistence curve can easily be
obtained explicitly [25]; here we just quote the asymptotic
behavior for r → r1,

Tðr → r1Þ ¼
1ffiffiffiffi
w

p ðr1 − rÞ1=2; ð8Þ

which yields

dT=drjr→r1 ¼ −1=2wT; ð9Þ

in agreement with the general conclusions drawn above
from thermodynamics, see Eq. (5a) and the related dis-
cussion. In the presence of a small magnetic field, one finds
for the coexistence curve in the T ¼ 0 plane

H ¼ m1

�
1þ 3

11

u
w

�
δrþOðδr2Þ; ð10Þ

where δr ¼ r − r1. This reflects the linear slope of the
tricritical wings with respect to the r axis that follows from
Eq. (5c). A more involved, but elementary, analysis shows
that the tricritical wings are perpendicular to the T ¼ 0
plane everywhere. We stress that these properties are not
tied to the specific physical mechanism that underlies the
free-energy function (7); they must be true for any model

that leads to a first-order quantum phase transition and
correctly reflects thermodynamics.
We conclude with some additional discussion points.

(1) The most often observed shape of the phase diagram in
quantum ferromagnets, with increasing hydrostatic pres-
sure driving the system into the disordered phase, is not
what one might naively expect. In a fluid analogy, this is
equivalent to what is observed in H2O and H2S, while in
most fluids increased pressure stabilizes the ordered phase.
In quantum ferromagnets the latter can also occur, see
Fig. 3, but it is not common. As we have shown, this feature
of the phase diagram is tied to the sign of the thermal
expansion coefficient, which tends to be negative in low-
temperature ferromagnets. Regardless of whether hydro-
static pressure induces or destroys ferromagnetism, Eq. (5c)
implies that the tricritical wings must always extend in the
direction of the paramagnetic phase. (2) All actually
measured tricritical wings show all of the structural features
discussed above, as they must, since the former hinge on
basic thermodynamics only. However, occasionally sche-
matic drawings of wings in the literature violate these
thermodynamic requirements, showing wings that are
perpendicular to the pressure axis or are not perpendicular
to the T ¼ 0 plane. (3) The discontinuity of the specific-heat
coefficient across the first-order transition, 0 < Δγ < ∞,
has an interesting implication for the dynamical critical
exponents in the system. Since the static and dynamic
specific-heat exponents ᾱ and zc are related by a hyper-
scaling relation ᾱ ¼ νðzc − dÞ, with ν the correlation-length
exponent and d the spatial dimensionality of the system [7],
a discontinuous specific-heat coefficient (ᾱ ¼ 0) implies
zc ¼ d. This is indeed the value of zc within an explicit
theory that describes the first-order transition, see Ref. [7].
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