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We measure the shear viscosity for a resonantly interacting Fermi gas as a function of temperature from
nearly the ground state through the superfluid phase transition into the high temperature regime. Further,
we demonstrate an iterative method to estimate the local shear viscosity coefficient αSðθÞ versus reduced
temperature θ from the cloud-averaged measurements hαSi, and compare αS to several microscopic
theories. We find that αS reveals features that were previously hidden in hαSi.
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Condensates of bosons or fermion pairs exhibit nearly
frictionless hydrodynamic flow near and below a critical
temperature, Tc, which is a defining and striking macro-
scopic property of superfluids. Just above Tc, where the
fluid is normal, a regime of extremely small, but finite,
shear viscosity is observed. A universal lower bound for the
ratio of shear viscosity to entropy density, ℏ=ð4πkBÞ, is
conjectured for this normal fluid regime [1]. Below Tc, the
behavior of the shear viscosity of bosonic and fermionic
fluids is quite different. In bosonic 4He [2], there is an
increase in the shear viscosity as the temperature decreases
below Tc, which is believed to arise from single particle
bosonic excitations that couple to the collective (Nambu-
Goldstone) modes [3,4]. In fermionic 3He [5], the shear
viscosity decreases rapidly to zero as the temperature
decreases below Tc, most likely as a result of the sup-
pression of fermionic excitations at low temperatures [4].
An optically trapped, ultracold Fermi gas of atoms tuned

near a collisional (Feshbach) resonance provides a new
paradigm for the study of shear viscosity in quantum fluids
[6,7], enabling experimental access not only to Bose and
Fermi superfluid systems, but also to a resonant, universal
regime, where the gas has both fermionic and bosonic
properties. Near a Feshbach resonance [8,9], a bias mag-
netic field applied to a trapped cloud tunes the interaction
strength between atoms in two different hyperfine states,
denoted spin-up and spin-down. Well above resonance,
atoms in different spin states are weakly attractive, and the
system can be described by the Bardeen-Cooper-Schrieffer
(BCS) theory. Well below resonance, pairs of spin-up and
spin-down atoms are tightly bound into weakly repulsive
molecular bosons, where the Bose-Einstein condensate
(BEC) theory is applicable. On resonance, there exists a
very strongly interacting state of matter, the unitary or
universal Fermi gas (UFG), which exhibits scale-invariant
hydrodynamic expansion [10].
We report the measurement of the shear viscosity of a

UFG as a function of temperature below the superfluid
transition temperature, testing the degree to which its

transport properties align with those of Bose and Fermi
quantum fluids. By observing the expansion of a cigar-
shaped cloud, we first obtain the shear viscosity averaged
over the density profile. In this cloud-averaged data, we
observe a rapid decrease in the shear viscosity as the
temperature is reduced below Tc. We then demonstrate a
method for inverting the cloud-averaged viscosity data to
estimate the local shear viscosity as a function of reduced
temperature, revealing features that were previously hidden
in the cloud averages. This inverted data for the local shear
viscosity is compared to recent theories of the shear
viscosity for a UFG in the transition region [4,11–17],
which differ in the predicted contributions of pair corre-
lations, fermionic excitations, and bosonic excitations at
low temperature. Using the measured local shear viscosity
and the measured local entropy density [18], we also
determine the local ratio of the shear viscosity to the
entropy density, which is compared to the universal lower
bound conjectured by Kovtun, Son, and Starinets [1].
In the experiments, a Fermi gas of 6Li atoms is prepared

in a 50-50 mixture of the two lowest hyperfine states and
confined in a cigar-shaped optical trap with an elliptical
transverse profile. The trap oscillation frequencies are
ðωx;ωy;ωzÞ ¼ 2π × ½2210ð4Þ; 830ð2Þ; 64ð0.5Þ� Hz. The
cloud is tuned near a broad Feshbach resonance and cooled
by evaporation [19] to nearly the ground state. The final
temperature of the gas is controlled by altering the optical
trap lowering curve used for evaporation.
The cloud is abruptly released from the trap and imaged

from two orthogonal directions at a time t after release to
determine the cloud radii σiðtÞ in all three directions,
i ¼ x; y; z. There is evidence that the superfluid and normal
fluid components of a UFG move together in hydrody-
namic expansion [10], which is consistent with the exist-
ence of exact scaling solutions for a two-fluid model of the
collective modes [20]. We therefore assume that the cloud
radii expand according to a single-fluid model, where
σiðtÞ ¼ σið0ÞbiðtÞ. The hydrodynamic expansion factors
biðtÞ obey universal evolution equations that include
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viscous forces and heating [10,21]. Using the known
trap parameters, the cloud radii data are fit using the
cloud-averaged shear viscosity coefficient hαSi as a free
parameter. The initial cloud radii σið0Þ and hαSi are self-
consistently determined from the transverse aspect ratio
σxðtÞ=σyðtÞ using only one expansion time t for one
measurement [21]. For the new data presented in this
Letter, which extends to very low temperature, this
method greatly increases the temperature resolution, see
Fig. 1 (inset).
The measured shear viscosity coefficient is related to the

shear viscosity, η, which has a dimension of momentum per
unit area, and hence is given in natural units of ℏn, where
n ¼ nðrÞ is the local density. A local shear viscosity
coefficient αS is then defined by η≡ αSℏn [6]. As noted
above, the measurements determine a cloud-averaged shear
viscosity coefficient hαSi, which is defined by

hαSi≡ 1

Nℏ

Z
d3rη ¼ 1

N

Z
d3rnαSðθÞ; ð1Þ

where N is the total number of atoms. As shown previously
for a UFG, αSðθÞ is a function only of the local reduced
temperature θ≡ T=TFðnÞ, where TFðnÞ is the local Fermi
temperature. Further, hαSi is temporally constant as the
cloud expands; i.e., it is equal to the cloud-averaged initial
value with n → nðr; t ¼ 0Þ [6,7,21].
Figure 1 shows the trap-averaged shear viscosity coef-

ficient hαSi as a function of the reduced temperature at the
center of the trap θ0 ¼ T=TFðn0Þ, where n0 ≡ nðr ¼ 0Þ.
Temperature is determined from the measured cloud
profile. The measured trap potential [22] and the equation
of state measured by Ku et al., [18] are used to determine
the local density as a function of reduced temperature at the

cloud center, θ0, i.e., nðr; θ0Þ. This relates the measured
cloud profile to θ0.
We now show that the trap-averaged data of Fig. 1 for

hαSi versus θ0 can be inverted to estimate the local shear
viscosity coefficient αSðθÞ as a function of the local
reduced temperature θ ¼ T=TFðnÞ. For a single measure-
ment of hαSi at θ0, the reduced temperature θ ¼
θ0ðn0=nÞ2=3 has a minimum θ0 at the trap center and
increases as the density n decreases. Therefore, a single
measurement contains information over a range of
reduced temperatures, which enables an estimate of
αSðθÞ from the trap-averaged data, by using an iterative
shrinking-threshold (IST) algorithm, a technique that is
commonly used in imaging processing [23].
However, hαSi is formally divergent. For large θ,

αSðθÞ→α3=2θ
3=2∝T3=2=n, where α3=2¼ 45π3=2=ð64 ffiffiffi

2
p Þ≃

2.77 [12]. Then, in the low density region, the integrand
nαSðθÞ ¼ n0αSðθ0Þ is independent of density. Fortunately,
energy conservation assures that the integral must be
finite and kinetic theory shows that the shear viscosity
η ¼ ℏnαS → 0 as the density vanishes [11].
In our data inversion procedure, we circumvent this

problem using a simple approximation, which assures that
the local shear viscosity scales properly as T3=2 in the low
density (but still hydrodynamic) part of the cloud. This is
accomplished by experimentally determining a finite
volume, which is bounded by a cutoff radius, Rc. We find
Rc from hαSi data in the temperature region where hαSi
has a universal θ3=20 dependence [6,7,21]. Using hαSi ¼
c0 þ c1θ

3=2
0 to fit the data yields c0 ¼ 0.34ð4Þ and c1 ¼

3.60ð15Þ [24]. The cutoff radius Rc is then found from
Eq. (1), which requires α3=24πR3

cn0=ð3NÞ ¼ c1 [22,24].
We assume a Gaussian density profile, with central density
n0 ¼ Nðπ 2

3
hr2iÞ−3=2. Then we find Rc ¼ 0.98hr2i1=2 [24].

Here, hr2i is the (temperature-dependent) mean square
radius of the trapped cloud in scaled coordinates [22].
Making the simplest scale-invariant assumption, we take
Rc ¼ hr2i1=2 at all temperatures [24].
Now we assume a piecewise representation of the local

shear viscosity, using a discrete set of reduced temperatures
θi, with αSðθÞ ¼ αi for θi ≤ θ ≤ θiþ1. Equation (1) is then
converted into a system of linear equations, with the jth
equation corresponding to the jth measurement of the trap-
averaged shear viscosity hαSij with a reduced temperature
θ0j at the trap center,

hαSij ¼
X
i

Cjiαi;

Cji ≡
Z

Riþ1ðθ0jÞ

Riðθ0jÞ
4πr2nðr; θ0jÞdr: ð2Þ

For each θi, ðθi=θ0jÞ3=2 ¼ nð0; θ0jÞ=nðRi; θ0jÞ determines
Riðθ0jÞ. We can write Eq. (2) in matrix form,

FIG. 1 (color online). Trap-averaged shear viscosity coefficient
hαSi, where the shear viscosity is η ¼ αSℏn. The solid blue points
show the hαSi data versus reduced temperature θ0 at the trap
center, after binning the raw data (inset) in θ0. The vertical
dashed line denotes the critical temperature at the trap center
θc ¼ 0.167ð13Þ [18]. The red solid line is obtained by integrating
αSðθÞ, which is estimated from the hαSi data using an image
processing algorithm.
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hαSi ¼ C · α: ð3Þ
The IST algorithm [23] removes high frequency noise

associated with measurements, but leaves enough resolu-
tion to determine the smooth behavior and significant
transitions in the local shear viscosity [24]. Our imple-
mentation of the IST algorithm takes the form

αmþ1 ¼ ð1 − βÞαm þ βΨ½αm þ CTðhαi −C · αmÞ�; ð4Þ
where m is the iteration number and αmþ1 is determined
from the previous m step, αm. Here, 0 ≤ β ≤ 1 is an
adjustable parameter that determines the speed of con-
vergence of the iterative process, CT is the transpose of C,
and ΨðxÞ is a nonquadratic denoising function. We choose
ΨðxÞ to be a three-point moving average. The local shear
viscosity converges slowly from an initial seed α0, which
we take to be the high temperature approximation for the
local shear viscosity, discussed above, 2.77θ3=2i .
For our viscosity data, Eq. (4) is robust in the choice of β.

We monitor the change in α as a function of iteration
number m in order to determine convergence. For α shown
in this Letter, where β ¼ 0.1, the IST algorithm converges
after m ¼ 50 iterations. The Supplemental Material pro-
vides a review of our implementation of the IST algo-
rithm [24].
Figure 2 shows the local shear viscosity coefficient αSðθÞ

obtained using Eq. (4) and the seed function 2.77θ3=2. For
large θ, the local shear viscosity converges to the two-body
Boltzmann equation limit α ¼ 2.77θ3=2 [12] by construc-
tion, i.e., by our choice of Rcðθ0Þ. As θ is decreased to
θ≃ 1, αSðθÞ rises above the high T prediction. Since the
viscosity is inversely proportional to the collision rate in the
two-body limit, this result is consistent with a decreasing
collision rate arising from Pauli blocking as the gas starts to
become degenerate. Above the critical temperature, we see
that α is larger than 2.77θ3=2. As a consistency check, we

integrate the αSðθÞ determined by the IST algorithm over
the cloud volume up to Rc, using Eq. (1). This yields the red
curve in Fig. 1, which fits the measured trap-averaged
viscosity coefficients with a normalized ~χ2 ¼ 1.0.
Figure 3 shows αSðθÞ in the low temperature regime,

which is compared to microscopic theories. We observe
that αSðθÞ rises with increasing temperature much more
sharply than the cloud-average hαSi of Fig. 1. The
measured maximum slope α0SðθÞ may be limited by the
resolution of our inversion procedure, as explored in more
detail in the Supplemental Material [24]. Below Tc, our
estimated local shear viscosity is in remarkably good
agreement with theoretical prediction based generally on
the pseudogap-BCS theory, which includes contributions
from noncondensed pairs [4]. The quantum Monte-Carlo
[16] result captures the qualitative shape, but is closer to the
two-body limit than our estimate near the superfluid
transition. Predictions using a diagrammatic approach,
starting from the exact Kubo formula [15], are well above
the two-body limit, closer to our estimates, and in good
agreement with the estimated slope of αðθÞ above θ ¼ 0.3.
At the very lowest temperatures measured, the estimated αS
is consistent with zero. We find the interesting result that
the slope α0SðθÞ of the inverted data has a peak at the
superfluid transition temperature, Fig. 4, which is robust
with respect to our choice of parameters in implementing
the IST algorithm. This is reasonable, as we expect that the
superfluid fraction varies most strongly near θc.
Next, we determine the ratio of the local shear viscosity

to the local entropy density, using the entropy data of
Ref. [18]. The ratio is compared to the lower bound
conjectured by Kovtun, Son, and Starinets [1], as shown

FIG. 2 (color online). Local shear viscosity coefficient αS (blue
dots) versus reduced temperature θ ¼ T=TFðnÞ. The prediction
from the two-body Boltzmann equation [12] 2.77θ3=2 (black
curve) is used as a seed function to initialize the iteration
procedure and as a constraint at large θ.

FIG. 3 (color online). Extracted local shear viscosity coefficient
αS (blue dots) versus reduced temperature θ ¼ T=TFðnÞ near the
superfluid transition temperature, where the local shear viscosity
is η ¼ αSðθÞℏn. The vertical dashed line denotes the critical
temperature θc ¼ 0.167ð13Þ [18]. Blue bands denote the standard
error corresponding to the statistical uncertainty in hαSi;
Red solid line from Guo et al., Ref. [4]; Green dotted curve
from Enss et al., Ref. [15]; Purple dot-dashed curve from
Wlazlowski et al., Ref. [16]; Black-solid line prediction from
kinetic theory αS ¼ 2.77θ3=2 [12].
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in Fig. 5. We find that the ratio has a relatively weak
dependence on θ for a range of temperature above the
superfluid transition temperature, a shallow minimum for
θ ≈ 0.4 in the normal fluid regime, where of η=S ¼ 0.5,≃6
times the predicted lower bound [1]. These features are in
qualitative agreement with the predictions of Enss et al.,
Ref. [15]. In addition, there appears to be a minimum in the
ratio below Tc and an upturn in the ratio as T → 0.
However, as both the entropy and the viscosity are rapidly
approaching zero in this region, the error associated with
both of the measured quantities does not permit an
unambiguous determination.
We have presented a precision measurement of the

cloud-averaged shear viscosity as a function of reduced
temperature at the cloud center hαSi, from well below the
superfluid phase transition to the high temperature limit.
We observe a rapid decrease in the measured shear
viscosity below Tc, which suggests that the universal shear

viscosity of a unitary Fermi gas is closer in character to that
of fermionic 3He than to bosonic 4He. Further, we estimate
the local shear viscosity coefficient αSðθÞ from cloud-
averaged data using an image processing method. We
assume that the viscous forces in the expanding cloud
act within a finite effective radius Rc, which we exper-
imentally determine to assure convergence to the two-body
Boltzmann equation limit at high temperature. Although
determination of the systematic uncertainty in the magni-
tude of αSðθÞ arising from this choice of Rc is difficult [24],
our estimated local shear viscosity coefficient αSðθÞ already
reveals qualitative features that are hidden in hαSi, and can
be directly compared to predictions for homogenous
systems.
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