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Electromagnetic cavities are used in numerous domains of applied and fundamental physics, from
microwave ovens and electromagnetic compatibility to masers, quantum electrodynamics (QED), and
quantum chaos. The wave fields established in cavities are statically fixed by their geometry, which are
usually modified by using mechanical parts like mode stirrers in reverberation chambers or screws in
masers and QED. Nevertheless, thanks to integral theorems, tailoring the cavity boundaries theoretically
permits us to design at will the wave fields they support. Here, we show in the microwave domain that
it is achievable dynamically simply by using electronically tunable metasurfaces that locally modify the
boundaries, switching them in real time from Dirichlet to Neumann conditions. We prove that at a high
modal density, counterintuitively, it permits us to create wave patterns presenting hot spots of intense
energy. We explain and model the physical mechanism underlying the concept, which allows us to find
a criterion ensuring that modifying parts of a cavity’s boundaries turn it into a completely different one.
We finally prove that this approach even permits us, in the limiting case where the cavity supports only
well-separated resonances, to choose the frequencies at which the latter occur.
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Cavities, because they trap waves for long times due to
their reflecting walls, are used in a vast number of scientific
domains [1–10]. Indeed, in these closed media and due
to interferences, the free space continuum of solutions
becomes a discrete set of stationary eigenmodes ψn of
eigenfrequencies ωn. These enhanced stationary fields are
commonly used in fundamental physics to increase wave-
matter interactions [3] or in electromagnetic compatibility to
test electronic devices [1]. Yet the eigenmodes and asso-
ciated eigenfrequencies of a cavity are imposed and hence
statically fixed by its geometrical properties through the
boundary conditions [11]. This explains why mechanical
parts are ordinarily used to physically modify the properties
of reverberant media: rotating trays in microwave ovens,
mode stirrers in reverberation chambers, or even screws in
masers and QED electromagnetic cavities. In this work, we
break these paradigms by showing that one can control
at will and in real time the wave fields created by antennas
in cavities by tailoring only their boundaries without any
mechanical component. This is achieved through the use
of a binary tunable reflecting metasurface [12,13] [denoted
the spatial microwave modulator (SMM)], which is part of
the frontiers of the cavity, and can switch dynamically its
boundary conditions from Dirichlet to Neumann.
We perform our demonstrations in the microwave

domain, using antennas placed inside reverberant metallic
cavities. For the sake of completeness, we demonstrate our
findings with a disordered cavity [Fig. 1(a)] that allows
achieving statistical averaging. For large enough cavities
and at the angular frequency ω, the spectral density of
modes ρðωÞ, which defines the average frequency spacing
between eigenmodes, is asymptotically equal to the Weyl

law [5,15–18] for a three-dimensional and polarized
electromagnetic field:

ρðωÞ ¼ 1

π2
V
ω2

c30
; ð1Þ

where V is the volume of the cavity and c0 the speed of
light in vacuum.
Real cavities always include some dissipation, due to

Ohmic losses or leakage for partially radiative cavities, and
hence the eigenmodes become resonances with linewidths
Γn or, equivalently, quality factors Qn ¼ 2ωn=Γn. When
one considers a given frequency, there may be several
modes overlapping due to the widening of each Lorentzian.
This number of modesNðωÞ strongly depends on the cavity
quality factor, which is statistically the average over theQn,
and on the mode density ρðωÞ. It may vary from much
larger than unity to smaller than unity (meaning well-
separated resonances) as schemed in Figs. 1(b)–1(d). On
average, it is estimated by

NðωÞ ¼ ρðωÞhΓni ¼
2

π2
V
Q

�
ω

c0

�
3

: ð2Þ

The simplest way to probe the wave fields established
inside cavities consists in measuring the transmission
between a source antenna S and a receiver one R, both
placed inside it, as depicted in Fig. 1(a). The transmission
tðωÞ is the Green function between those two points, which
is the sum of the NðωÞ contributing modes [19–21]:

tðωÞ ¼
XNðωÞ

n¼1

ψnðrSÞψ�
nðrRÞ

ω2 − ω2
n þ iωΓn

: ð3Þ
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Since our experiments take place in a disordered cavity,
the eigenmodes and hence any linear combination of them
are also disordered; namely, their spatial profile looks like
an optical speckle. The transmission is thus the summation
of NðωÞ statistically independent spatial wave patterns,
that we call spatial degrees of freedom. By dropping the
frequency dependence, this transmission coefficient can be
written as a sum of N complex numbers with random
amplitudes and phases, namely, phasors:

t ¼
XN
k¼1

tkeiθk : ð4Þ

We will now show that we can actually control these
spatial degrees of freedom in order to tune the trans-
mission between antennas or, in other words, to shape the
wave fields inside the cavity, just by modifying the
boundaries of the cavity. We place the SMM on part of
the cavity boundaries [Fig. 1(a)]. It is composed of 102
half-wavelength-square areas that are patch resonators
[12], which can be turned on and off resonance by using
diodes. An electronic board can therefore switch them
from almost perfect electric conductors to magnetic
conductors, corresponding, respectively, to Dirichlet
and Neumann boundary conditions for the electric field
[14]. Using the SMM, we can hence control p spatial

degrees of freedom of the wave field, with p ranging from
0 to 102 at the operating frequency of 2.47 GHz, if we
assume the boundary elements statistically independent.
This hypothesis should be valid, since all elements are
separated by the coherence length of the field inside the
disordered cavity, i.e., half a wavelength [14]. We will
use this SMM alongside an algorithm developed in the
optical domain to focus light through multiple scattering
media using spatial light modulators, a technique known
as wavefront shaping [13,22–25]. Similarly, in our wave-
field shaping experiments, we iteratively test every
element of the SMM to obtain the best transmission
between S and R [14]. Performing this optimization is
actually a very convenient way to investigate the physics
of waves trapped in these cavities: We test several
hundreds of distinct cavities in real time thanks to the
SMM, which allows us to link the results to the statistical
parameters describing disordered cavities.
From a mathematical point of view, changing the

boundary conditions of p elements of the SMM amounts
to controlling the sign of p modes out of N, hence leaving
(N − p) uncontrolled ones [14]. Such a sum of random
phasors [26] can be represented in the complex space as a
sum of vectors of random amplitude tk and phase θk,
similarly to a 2D random walk [Figs. 1(e) and 1(f)]. The
transmission is then the sum of two independent phasors,
an uncontrolled one Au, which is constant for a given
cavity, and a phase-controlled one Ac:

t ¼ Au þ Ac ¼
XN−p

k¼1

tkeiθk þ
Xp
k¼1

tkeiθk : ð5Þ

Comparing the root mean square values of Au and Ac,
one identifies three different regimes of control of the
cavity. (i) The first one corresponds to N ≫ p [Fig. 1(b)]
or, equivalently, to Au ≫ Ac [Fig. 1(e)]. In this case, wewill
show that the transmission between the source and the
receiver can be noticeably increased thanks to the SMM,
hence resulting in focused wave fields. (ii) A transition
occurs when Ac becomes comparable to Au [Fig. 1(f)], that
is, when the number of available spatial degrees of freedom
equals that of the controlled ones, i.e., N ≈ p [Fig. 1(c)]. In
this case, we completely control the cavity by modifying a
few of its boundary conditions, and we can turn it into a
statistically different one. (iii) When N is further decreased,
we may have no mode around the working frequency and a
very low transmission [Fig. 1(d)]. In this regime, we will
show that optimizing the transmission between two anten-
nas amounts to finding the best cavity out of the 2p avai-
lable ones to create an eigenmode which is maximal at both
antenna positions, at the working frequency [Fig. 1(g)].
Interestingly, from the experimental point of view, we can
access all of those cases simply by modifying the cavity
quality factor or its volume.
We start by considering case (i) where N ≫ p and

use the optimization algorithm [13,22,24,25] with the

FIG. 1 (color online). Concept. (a) Experimental setup [14]:
cavity dimensions 1.45 × 1 × 0.75 m3. (b)–(d) Schematic con-
tribution of the resonances (color lines) to the total transmission
(black line) for (b) a large number of modes, (c) the limit of our
model, and (d) with N lower than 1. (e)–(g) Schematic view of
the random walks of the N contributing modes corresponding
to (b)–(d) when the sign of p modes out of N can be controlled.
Ac is the sum of the p controlled modes, while Au is the sum of
N − p uncontrolled modes. The total transmission t (in black)
corresponds to the sum of Ac with Au. Plain (dashed) arrows:
before (after) optimization.
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SMM to enhance the transmission between S and R.
Figures 2(a) and 2(b) show typical spectra and averaged
spectra of the transmitted energy between these antennas,
before and after the optimization, respectively. The trans-
mission between two antennas is increased by a factor of
10 on average, while on two other receiving antennas it
remains constant. This proves that the originally randomly
distributed wave field is turned into a focused one.
A random walk approach gives a simple picture of this
phenomenon. Before optimization, the transmission is a
sum of N random phasors, since both controlled and
uncontrolled modes are randomly oriented in the complex
plane, and its extension is on average proportional to

ffiffiffiffi
N

p
[26,27]. However, the optimization aligns the p vectors in
a given direction, which means that Ac becomes propor-
tional to p, while Au remains a random sum of phasors
that is proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N − p

p
[Figs. 1(b) and 1(e)].

We therefore define the enhancement η as the ratio
between the average transmitted energy before and after
optimization:

η ¼ hjtj2if
hjtj2ii

≈
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

N − p
p þ pffiffiffiffi

N
p

�
2

: ð6Þ

An exact calculation [14] that accounts for the fact that
we control only the sign of the p elements leads to the
enhancement:

η ¼ 1þ 1

π

pðp − 1Þ
N

þ 2CðpÞ
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN − pÞp

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

π
ðp − 1Þ

r
;

ð7Þ
where CðpÞ is a positive function quickly converging
towards 1.
In order to verify our model, we conduct a statistical

series of experiments while independently varying the
number of controlled elements p and the Q factor, that
is, the number of modes [14]. For each value of p or Q, we
perform 270 statistically independent optimizations. The
averages of these optimizations are presented in Figs. 2(c)
and 2(d). The enhancement tends to initially evolve in a
quadratic way with the number of iterations, as expected
from our theoretical model. We also notice that, at high Q
factors, the enhancement curves converge much slowly. We
attribute this to correlations between the p elements due to
reverberation, a topic that will be the scope of future work.
In Figs. 2(e) and 2(f), we plot the average final enhance-

ments obtained versus the two variables p and Q. We
furthermore fit the obtained results with our theoretical
model [14]. Yet we introduce a parameter α which weights
the number of controlled elements p. We find a fitting
parameter α ¼ 0.3 [more exactly, 0.27 for Fig. 2(e) and
0.34 for Fig. 2(f)]. This value lower than unity accounts for
three different facts: The elements of the SMM dissipate
about 50% of the incoming energy [12], their efficiency at

the operating frequency is not identical from element to
element due to fabrication mismatches, and they act only on
a single polarization of the electromagnetic field on the
boundaries [14]. Yet the very good agreement between
the experiments and Eq. (7) underlines the validity of the
developed theoretical model.
We note that the fit of Fig. 2(f) stops at Q > 850 as it

reaches the point p ¼ N, which is the model limit, as we
cannot control more degrees of freedom than are available
in the experiment. In order to investigate deeper what
happens near this model’s edge, i.e., for case (ii) where
Au ≈ Ac, we conduct a new series of experiments. This
time, we do not use the mode stirrer, in order to keep the
exact same cavity for all the experiments, but we change
only its boundaries thanks to the SMM. Using 102
elements, we randomly pick 700 starting configurations
of the SMM (out of the 2102 possible ones) and start the
optimization process. We do so for different ratios of N=p
[14], in order to investigate the role of the p controlled
boundaries on the physics of the cavity. Figures 3(a)–3(c)
show the measured initial and optimized transmissions in

FIG. 2 (color online). Case (i), N ≫ p. (a) Typical energy
transmission between one emitter and three identical receivers
(antennas 1–3), separated by more than a wavelength. Quality
factor, Q ¼ 820; number of SMM elements, p ¼ 102. The blue
(respectively, red) curve is the transmission before (respectively,
after) optimization on receiver R (antenna 1). The black and green
curves are the transmissions on antennas 2 and 3, respectively, after
optimizing on the receiver R. (b) The same as (a), but averaged
on the stirrer positions and on the initial state of the SMM.
(c) Averaged transmission as a function of the iteration number of
the algorithm forQ ¼ 820 and varyingp. (d) The same for varying
Q and keeping p ¼ 102. (e),(f) Final enhancement η versus p for
Q ¼ 820 and versus Q for p ¼ 102. The theoretical fits corre-
spond to Eq. (7) with p replaced by αp (α ≈ 0.3).

PRL 115, 017701 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JULY 2015

017701-3



the complex plane or so-called Fresnel representation. It is
a direct picture of the random summation of the phasors we
previously discussed, and the results show a markedly
different behavior when N becomes lower than p. At this
point, the amplitude of Ac becomes larger than Au, which is
fixed for a given cavity. Hence, the binary controlled sum of
phasors becomes dominant and governs the cavity as
schemed in Fig. 1(f). In this case, the initial (or final)
phase of the transmission explores the entire complex
circle: The SMM alone can arbitrarily govern the wave
field. In other words, the cavity is turned into a completely
different one just by changing part of its boundaries. This
effect is even more visible from the optimized trans-
missions (red dots): The accessible angles clearly span a
limited range at high N=p, while an entire circle is visited
for the low ratio. We further realize a statistical study of the
distribution of the intensity and phase of the measured
transmissions before optimization. To do so, we first plot
histograms of these distributions for the various cases. We
notice that the histograms are rather different for the first
two series of experiments than for the last one. Indeed, for
N=p ≫ 1, the intensity histograms show a maximum for a
nonzero value, and the phase histograms are narrowly
distributed around 0, while, for N=p < 1, the intensity
probability peaks near the origin and the phase one is much
flatter [Figs. 2(d)–2(i)]. These results are in very good
agreement with the theory since, for N=p ≫ 1, that is, for
the very large sum of constant phasors with the small sum
of random ones, the intensity probability density function is
expected to be Rician modified and the phase one Gaussian
[8,26]. On the contrary, if we sum only a random set of
phasors, i.e., if the SMM controls the whole cavity, we
anticipate an exponentially decreasing probability density

function for the measured intensity and a constant one for
the phase [8,26]. The theoretical curves calculated with N
and p estimated from the measurements fit very well the
histograms.
If N is further decreased such that the resonances

become discrete, our previous model does not stand at
all. In this limiting case (iii), there may be no resonance at
the operating frequency [Fig. 1(d)]. However, we can
still run optimizations of the transmission between two
antennas. In order to perform these experiments, we have
to drastically decrease N, which can be done only by
reducing the modal density. Indeed, most of the dissipa-
tion in our experiments is due to the SMM, which limits
the Q factor of the cavities (note nonetheless that almost
lossless SMM are realizable). Therefore, we work with a
small cavity and a miniature mode stirrer [Fig. 4(a)] and
utilize the same setup as in Fig. 1(a) albeit with a smaller
SMM consisting of eight elements. Figure 4(c) presents
the transmission spectrum at intermediate steps of the
optimization. We observe the creation of a resonance
corresponding to an eigenmode around the working
frequency. To verify the validity of our results, yet with
a larger cavity, we finally perform finite element simu-
lations using COMSOL MULTIPHYSICS. This allows us to
reach the regime of low values of N, this time by using a
very high Q factor and large ergodic cavity [28,29]
[Fig. 4(b)]. The results of an optimized transmission
[Fig. 4(d)] demonstrate that our approach still works in
this case, as we have created a resonance at 2.47 GHz by
optimizing the transmission between two points. These
results assert that, at a low density of modes, we can finely
tune the spectral properties of a cavity without any
mechanical part. This approach, which paves the way
to the design of real time electronically reconfigurable

FIG. 3 (color online). From case (i) to (ii). (a)–(c) Initial (blue)
and optimized (red) transmissions (normalized by the averaged
initial transmission) for 700 initial configurations of the SMM for
a single cavity, in the complex plane. From (a) to (c), we decrease
N from large values (Au > Ac) down to N=p < 1. (d)–(f) Initial
intensity jt2j probability density function pIðIÞ for the three
cases. (g)–(i) The same for the probability density function of the
phase pθðθÞ [note the scale change in (i)].

FIG. 4 (color online). Case (iii), N < 1. (a) Experimental setup.
Cavity dimensions: 12 cm × 12 cm × 24 cm with an eight-
element SMM. (b) The 2D simulated ergodic cavity of radius
20λ0. SMM of 20 elements. Q ¼ 105. (c) Experimental trans-
mission jtj at low N for different optimization steps. (d) The same
in simulations.

PRL 115, 017701 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JULY 2015

017701-4



single mode cavities, will have many applications in
fundamental physics [2–7].
In this Letter, we have studied and modeled the physics

of waves trapped in reverberating cavities with dynamically
controllable boundary conditions, by using a tunable
metasurface as a spatial microwave modulator. Our results
prove that, at high modal density, tailoring the boundaries
of a cavity allows us to turn a randomly distributed wave
field into a focused one, thus paving the way to real time
and dynamical wave-field shaping in reverberating media
[30,31], with potential applications in wireless communi-
cation [13] or electromagnetic compatibility. We have
further shown that, when the number of modes is
decreased, the cavity reaches a regime completely governed
by the modulator where one can easily turn a given cavity
into a different one. Finally, in a third regime where the
resonances are clearly distinct, we have proven that we can
create and finely tune the eigenmodes and eigenfrequencies
of a cavity. Dynamically reconfigurable cavities will find
many applications in applied and fundamental physics and
shed light on very interesting mathematical problems.
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