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The LaAlO3=SrTiO3 interface hosts a two-dimensional electron system that is unusually sensitive to the
application of an in-plane magnetic field. Low-temperature experiments have revealed a giant negative
magnetoresistance (dropping by 70%), attributed to a magnetic-field induced transition between interacting
phases of conduction electrons with Kondo-screened magnetic impurities. Here we report on experiments
over a broad temperature range, showing the persistence of the magnetoresistance up to the 20 K range—
indicative of a single-particle mechanism. Motivated by a striking correspondence between the temperature
and carrier density dependence of our magnetoresistance measurements we propose an alternative
explanation. Working in the framework of semiclassical Boltzmann transport theory we demonstrate that
the combination of spin-orbit coupling and scattering from finite-range impurities can explain the observed
magnitude of the negative magnetoresistance, as well as the temperature and electron density dependence.
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The mobile electrons at the LaAlO3=SrTiO3 (LAO=STO)
interface [1] display an exotic combination of superconduc-
tivity [2,3] and magnetic order [4–7]. The onset of super-
conductivity at sub-Kelvin temperatures appears in an
interval of electron densities where the effect of Rashba
spin-orbit coupling on the band structure at the Fermi level is
strongest [8,9], but whether this correlation implies causation
remains unclear.
Transport experiments above the superconducting tran-

sition temperature have revealed a very large (“giant”) drop
in the sheet resistance of the LAO=STO interface upon
application of a parallel magnetic field [10–13]. An
explanation has been proposed [13,14] in terms of the
Kondo effect: Variation of the electron density or magnetic
field drives a quantum phase transition between a high-
resistance correlated electronic phase with screened mag-
netic impurities and a low-resistance phase of polarized
impurity moments. The relevance of spin-orbit coupling for
magnetotransport is widely appreciated [10,14–19], but it
was generally believed to be too weak an effect to provide a
single-particle explanation of the giant magnetoresistance.
In this work we provide experimental data (combining

magnetic field, gate voltage, and temperature profiles for the
resistance of the LAO=STO interface) and theoretical
calculations that support an explanation fully within the
single-particle context of Boltzmann transport. The key
ingredients are the combination of spin-orbit coupling, band
anisotropy, and finite-range electrostatic impurity scattering.

The thermal insensitivity of the giant magnetoresistance
[10,11], in combination with a striking correspondence that
we have observed between the gate voltage and temperature
dependence of the effect, are features that are difficult to
reconcile with the thermally fragile Kondo interpretation—
but fit naturally in the semiclassical Boltzmann description.
We first present the experimental data and then turn to the

theoretical description. Devices were fabricated by using
amorphous LAO (a-LAO) as a hard mask and epitaxially
depositing a thin (12 u.c.) film of LAO on top of a TiO2-
terminated (001)STO single crystal substrate. The film was
grown by pulsed laser deposition at 770 °C in O2 at a
pressure of 6 × 10−5 mbar. The laser fluence was 1 J cm−2

and the repetition rate was 1 Hz. The growth of the film was
monitored in situ using reflection high energy electron
diffraction (RHEED), and layer-by-layer growth was con-
firmed. After deposition, the sample was annealed for 1 h at
600 °C in 300 mbar of O2. Finally, the sample was cooled
down to room temperature in the same atmosphere.
Magnetotransport measurements were performed in a
four-probe Hall bar geometry and in a field-effect configu-
ration [Fig. 1(a), inset] established with a homogeneous
metallic back gate. The magnetic field B is applied in-plane
and perpendicular to the current. The longitudinal sheet
resistance ρxxðBÞ determines the dimensionless magneto-
resistance

MRðBÞ ¼ ρxxðBÞ=ρxxð0Þ − 1: ð1Þ
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The left panel of Fig. 1(a) shows the measured magneto-
resistance as a function of magnetic field, recorded
at 1.4 K, for gate voltages VG ranging from 0 to 50 V.
In general, we observe the magnetoresistance to remain
mainly flat up to some characteristic value of the magnetic
field. For larger values, the magnetoresistance drops sharply.
At even higher magnetic fields, the magnetoresistance
begins to saturate, producing an overall bell-like curve. At
the highest voltage VG ¼ 50 V, a very large negative
magnetoresistance is observed (a drop of 70%) over a
magnetic field range from 0 to 12 T. As VG is decreased,
the overall magnitude of the magnetoresistance drop is
suppressed, as the curves flatten out and the characteristic
field progressively moves to higher B. At VG ¼ 10 V, the
maximum magnetoresistance variation is less than 5%.
The right panel of Fig. 1(a) shows the measured mag-

netoresistance at a fixed gate voltage of VG ¼ 50 V,
for different temperatures ranging from 1.4 to 20 K. The
correspondence between the bell-shaped magnetoresistance

profiles as a function of temperature and gate voltage is
striking. As T increases or VG decreases, both the magnitude
of the magnetoresistance and steepness of ∂MR=∂B
decrease. Although the negative magnetoresistance is pro-
gressively suppressed as the temperature is raised, it is still
clearly visible at 20 K, in agreement with previous experi-
ments [10,11]. Notice that the characteristic field scale of
the resistance drop increases with temperature.
For the theoretical description we use a three-band model

of the t2g conduction electrons at the LAO=STO interface
[12], with Hamiltonian

H ¼
X

k;l;l0;σ;σ0
c†k;l;σðHL þHSO þHZ þHBÞck;l0;σ0 : ð2Þ

The operators c†k;l;σ create electrons of spin σ andmomentum
k (measured in units of the lattice constant a ¼ 0.4 nm), in
orbitals l ¼ dxy; dxz; dyz of the Ti atoms close to the inter-
face. We describe the various terms in this three-band
Hamiltonian, with parameter values from the literature
[12,20–29] that we will use in our calculations. (Further
details are given in the Supplemental Material [28].)
The lobes of the dxy orbital are in plane, producing two

equivalent hopping integrals tl ¼ 340 meV. For the two
other orbitals, the x lobe or y lobe is in plane and the z lobe
is out of plane, giving rise to one large and one small
hopping element tl ¼ 340 meV and th ¼ 12.5 meV,
respectively. The dxz and dyz orbitals are hybridized by a
diagonal hopping td ¼ th. Confinement lowers the dxy
orbital in energy by ΔE ¼ 60 meV. All this information
is encoded in

HL ¼

0
B@

ϵxyðkÞ − ΔE 0 0

0 ϵxzðkÞ δðkÞ
0 δðkÞ ϵyzðkÞ

1
CA ⊗ σ̂0; ð3Þ

ϵxyðkÞ ¼ 2tlð2 − cos kx − cos kyÞ;
ϵxzðkÞ ¼ 2tlð1 − cos kxÞ þ 2thð1 − cos kyÞ;
ϵyzðkÞ ¼ 2thð1 − cos kxÞ þ 2tlð1 − cos kyÞ;
δðkÞ ¼ 2td sin kx sin ky: ð4Þ

We use σ̂x;y;z and σ̂0 to denote the Pauli matrices and the
identity acting on the electron spin.
The intrinsic electric field at the interface breaks inver-

sion symmetry and produces the term

HZ ¼ ΔZ

0
B@

0 i sin ky i sin kx
−i sin ky 0 0

−i sin kx 0 0

1
CA ⊗ σ̂0; ð5Þ

with ΔZ ¼ 15 meV. Atomic spin-orbit coupling gives

(a)

(b)

FIG. 1 (color online). (a) Measured magnetoresistance at T ¼
1.4 K for different gate voltages (left panel) and at VG ¼ 50 V
for various temperatures (right panel). Inset: Schematic drawing
of the device in a Hall bar geometry (in-plane field perpendicular
to current direction), showing the source S, drain D, longitudinal
voltage Vxx, transverse voltage Vxy and gate voltage VG.
(b) Magnetoresistance calculated from the Boltzmann equation,
at fixed T ¼ 1.4 K (left panel) and at fixed n ¼ 2.2 × 1013 cm−2

(right panel).
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HSO ¼ ΔSO

2

0
B@

0 iσ̂x −iσ̂y
−iσ̂x 0 iσ̂z
iσ̂y −iσ̂z 0

1
CA; ð6Þ

with an amplitude ΔSO ¼ 5 meV. Together, HZ and HSO
cause a Rashba-type splitting of the bands, coupling the dxy
orbital with the dxz=yz orbitals above the Lifshitz point at the
bottom of the dxz=yz bands.
The term HB ¼ μBðLþ gSÞ · B=ℏ, with g ¼ 5 [27],

describes the coupling of the applied magnetic field to
the spin and orbital angular momentum of the electrons,
where S ¼ ℏσ̂=2 and

Lx ¼ ℏ

0
B@

0 i 0

−i 0 0

0 0 0

1
CA; Ly ¼ ℏ

0
B@

0 0 −i
0 0 0

i 0 0

1
CA;

Lz ¼ ℏ

0
B@

0 0 0

0 0 i

0 −i 0

1
CA: ð7Þ

The resulting highly anisotropic band structure is shown
in Fig. 2. Notice the unusually close relevant energy scales:
When measured from the bottom of the upper, anisotropic
bands, the Fermi energy, spin-orbit coupling induced spin-
splitting, Zeeman energy (10 T), and temperature (10 K) all
are on the order of 1 meV.
We calculate the magnetoresistance from the model

Hamiltonian (2) using the semiclassical Boltzmann trans-
port equation for the momentum k and band index ν-
dependent distribution function fk;ν ¼ f0ðϵk;νÞ þ gk;ν. We
linearize around the equilibrium Fermi-Dirac distribution
f0, at temperature T and chemical potential μ (determined
self-consistently to obtain a prescribed carrier density n).
In this way we find the conductivity tensor

σij ¼ e
X

k;ν

ðvk;νÞi∂gk;ν=∂Ej ð8Þ

in linear response to the electric field E. The longitudinal
resistivity ρxx then follows upon inversion of the σ tensor.
The band structure determines the velocity vk;ν ¼ ℏ−1∇kϵk;ν,
which is not parallel to the momentum ℏk because of the
anisotropic Fermi surface.
Calculations of this type are routinely simplified using

Ziman’s relaxation-time approximation [30,31], but the
combination of finite-range scattering and anisotropic band
structure renders this approximation unreliable [32]. We
have therefore resorted to a numerical solution of the full
partial differential equation

− eðvk;ν · EÞ∂f0=∂ϵk;ν ¼ ðe=ℏÞðvk;ν × BÞ · ∇kgk;ν

þ
X

k0;ν0
ðgk;ν − gk0;ν0 Þqkν;k0ν0δðϵk;ν − ϵk0;ν0 Þ: ð9Þ

Elastic impurity scattering enters with a rate

qkν;k0ν0 ¼
2

3
π3ℏ−1δ2ξ4nimpe−ξ

2jk−k0j2=2jhukνjuk0ν0 ij2: ð10Þ

The impurity density nimp and scattering amplitude δ drop
out of the magnetoresistance (1), so they need not be
specified. The scattering potential has correlation length ξ,
for which we take 2 nm≃ 5 lattice constants, consistent
with experiments on scattering by dislocations [33]. (Wewill
discuss the role of this finite correlation length later on.)
Both intraband and interband scattering are included via
the structure factor jhukνjuk0ν0 ij2, which takes into account
the finite overlap hψνðkÞjVðrÞjψν0 ðk0Þi of the Bloch states
ψνðkÞ ¼ ukνðrÞeik·r and ψν0 ðk0Þ ¼ uk0ν0 ðrÞeik0·r [34].
The in-plane magnetoresistance resulting from the

Boltzmann equation is shown in Fig. 1(b). The similarity
in the bell-shaped magnetoresistance curves, with a corre-
sponding dependence on carrier density and temperature,
is clear and remarkable in view of the simplicity of the
theoretical model. We conclude that a semiclassical single-
particle description can produce a giant magnetoresistance,
up to 50% for a quite conservative choice of parameter values.
Two main ingredients explain how such a large negative

magnetoresistance could follow from a model without
electron-electron interactions. The first ingredient is the
orbital-mixing character of the atomic and inversion-
symmetry-breaking spin-orbit coupling terms HSO and
HZ. As a result, the spin-orbit splitting is very nonlinear
and produces a sweet spot, that is, a narrow range of Fermi
energies (carrier densities n� ≃ 2.2 × 1013=cm2) in which
the system becomes sensitive to small changes in the density.
If the density (or the corresponding gate voltage) is near the
sweet spot, the spin-orbit induced bandmixing gives rise to a
substantial contribution to the (zero-field) resistance stem-
ming from interband scattering. The Zeeman energy in turn
favors an alignment of the spin with the magnetic field and
drives a highly anisotropic deformation of the Fermi surface

(a) (b)

FIG. 2 (color online). (a) Dispersion relation for the mobile
electrons at the LaAlO3=SrTiO3 interface, calculated from the
model Hamiltonian (2) for n ¼ 2.2 × 1013 cm−2 at B ¼ 0 (solid
line) and B ¼ 12 T (dashed line). Colors indicate the orbital
character of the bands. (b) Corresponding Fermi surfaces when
the chemical potential is located at the “sweet spot” above the
Lifshitz point where the system becomes very sensitive to
changes in carrier density and magnetic field.
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into spin-polarized bands (see Fig. 2). Interband scattering is
suppressed which explains the decrease in sheet resistance.
At densities n < n� only a single band is occupied and spin-
orbit coupling is well described by a conventional Rashba
term αSOðσ̂ × pÞ [9,22,37] and our calculation gives a
vanishingly small magnetoresistance. At densities n > n�
the calculated magnetoresistance starts to saturate and
eventually becomes small again.
The second ingredient is the finite correlation length ξ of

the disorder potential. The resulting anisotropic scattering
rate (10) is largest at small momenta jk − k0j. Moderate
values of ξ on the order of a few lattice constants suppress
backscattering processes within the outer Fermi surface
with large average momentum kF, while still allowing for
interband scattering. This is accompanied by a quasiparticle
lifetime which can be significantly smaller for the inner
band (smaller average kF). The imbalance of band mobil-
ities promotes the importance of interband scattering when
transport is dominated by quasiparticles in the outer bands
which have a larger Fermi velocity and a small intraband
backscattering rate. In comparison, we have found [28] that
the isotropic scattering by a delta-function impurity poten-
tial cannot produce a magnetoresistance exceeding 15%.
Our theoretical curves show a smooth dependence on

temperature, with the negative magnetoresistance persist-
ing beyond 20 K, and they show a striking correspondence
between the temperature dependence of the magnetoresist-
ance for a fixed density and the density dependence for a
fixed temperature. This correspondence, a hallmark of our
experimental data, can be understood as a consequence of
the renormalization of the chemical potential as a function
of temperature; see Fig. 3. The weak temperature depend-
ence of the Hall resistance points towards a constant carrier
density in the range 1–20 K [38]. As shown in Fig. 3(a) the
density of states increases steeply with band energy in the
vicinity of the sweet spot, much more than in conventional
semiconductors. To keep the total carrier density fixed with

increasing temperature, the chemical potential is lowered
by more than 1 meV at 20 K compared to its low
temperature limit. This is why increasing the temperature
is equivalent to probing the band structure at a lower
energy, explaining the similarity in the magnetoresistance
curves in the left and right panels of Fig. 1.
These are the two key arguments in favor of a single-

particle spin-orbit-coupling based mechanism for the giant
negative magnetoresistance: First, the persistence of the
effect to elevated temperatures, and second the correspond-
ing effect of temperature increase and density decrease.
It seems difficult to incorporate these features of the data
in the correlated-electron mechanism [13,14], based on
Kondo screening of magnetic moments. There is a third
noteworthy feature of the data that is not well reproduced
by our calculation, and has been interpreted as evidence
for a transition into a low-field Kondo phase [13,14]: A
rescaling of the magnetic field B → B=B⋆ by a density-
dependent value B⋆ collapses the measured magnetoresist-
ance at different densities onto a single curve; see Fig. 4(a).
If we apply this B=B⋆ scaling to our numerical results a
significant n dependence remains; see Fig. 4(b). The
experimental scaling law points to some relevant physics
that is not yet included in our minimal model.
In conclusion, we have presented experimental data and

theoretical calculations that support a semiclassical single-
particle mechanism for the giant magnetoresistance of the
LAO=STO interface. The Boltzman transport equation
with spin-orbit coupling, in combination with anisotropy
of Fermi surface and scattering rates, suffices to produce
a large resistance drop upon application of a magnetic
field. The characteristic temperature and carrier-density
dependence agrees quite well with what is observed
experimentally, but the B=B⋆ scaling will likely require
an extension of the simplest three-band model.
Our explanation of the sudden onset of the magneto-

resistance when the carrier density approaches a sweet spot

(a) (b)

FIG. 3 (color online). Energy-dependent density of states (a)
and temperature-dependent chemical potential (b), calculated
from the three-band Hamiltonian (2). Both quantities are shown
for the sweet-spot carrier density n ¼ 2.2 × 1013 cm−2, at B ¼ 0
(solid line) and B ¼ 12 T (dashed line).

(a) (b)

FIG. 4 (color online). Measured (a) and calculated (b)
magnetoresistance at 1.4 K for different densities or gate voltages
as a function of the rescaled magnetic field B=B⋆. The character-
istic field B⋆ is chosen such that the rescaled curves all pass
through the point with MR ¼ −0.05.
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of amplified spin-orbit coupling has addressed the normal-
state transport above the superconducting transition tem-
perature. Since superconductivity happens in the vicinity of
the same sweet spot, it would be interesting to investigate
whether spin-orbit coupling plays a dominant role in that
transition as well.
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