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We present a heterogeneous version of Maxwell’s theory of viscoelasticity based on the assumption of
spatially fluctuating local viscoelastic coefficients. The model is solved in coherent-potential approxi-
mation. The theory predicts an Arrhenius-type temperature dependence of the viscosity in the vanishing-
frequency limit, independent of the distribution of the activation energies. It is shown that this activation
energy is generally different from that of a diffusing particle with the same barrier-height distribution,
which explains the violation of the Stokes-Einstein relation observed frequently in glasses. At finite but low
frequencies, the theory describes low-temperature asymmetric alpha relaxation. As examples, we report the
good agreement obtained for selected inorganic, metallic, and organic glasses. At high frequencies, the
theory reduces to heterogeneous elasticity theory, which explains the occurrence of the boson peak and
related vibrational anomalies.
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The interplay between relaxation and elasticity in very
viscous glass-forming supercooled liquids has been in the
focus of glass scientists since the pioneering work of
Maxwell on viscoelasticity [1]. Within Maxwell’s theory,
the glass transition is a very simple matter. The relaxation
time is given by τ ¼ η=G∞, where η ¼ ηðTÞ is the shear
viscosity and G∞ is the high-frequency shear modulus. If
this quantity is (much) larger than the observation time or
the typical time for glassblower’s manipulations, the
material has transformed effectively to a solid. The corre-
sponding temperature is the conventional glass-transition
temperature Tg. Within Maxwell’s theory, the loss part of
the frequency-dependent shear modulus exhibits a Debye
peak of the form G00ðωÞ ¼ ηω=ð1þ ω2τ2Þ, which gives a
peak at the frequency τ−1. The peak positions of mechanical
and dielectrical response spectra exhibit the same temper-
ature dependence as the inverse viscosity. The viscosity
varies exponentially with the inverse temperature as
ln ηðTÞ ∝ EAðTÞ=kBT. Near and above the glass transition
temperature Tg (defined in the above way), the differential
activation energy EA follows a Vogel-Fulcher-Tammann
(VFT) law EA ∝ T=ðT − T0Þ. At lower temperatures, it
levels off towards a temperature-independent value. There
is some evidence that this temperature dependence of EA is
very similar to that of the shear modulus [2–4]. The idea
behind this finding is that activation barriers are related via
the yield stress to the shear stiffness [5]. The ratio between
the low-temperature and high-temperature activation ener-
gies may serve as a measure of Angell’s fragility classi-
fication. It is 1 for “strong” materials and up to 4 for
“fragile” materials [6,7]. In fragile glasses, the elastic and

dielectric loss peaks (α relaxation peaks), however, do not
have the above Debye form but are broadened on a
logarithmic frequency scale, which is called “stretching”
[8]. The alpha peak in the low-temperature regime below
Tg becomes quite asymmetric [9–13]. In this temperature
regime, the stretched alpha peaks have been described with
phenomenological formulas like the Cole-Davidson or
Kohlrausch equations [8].
Above the glass transition, the mode-coupling theory

(MCT) [14–16] gives a convincing and detailed account of
the stretching phenomenon plus an anomalous increase
beyond the alpha peak (short-time β relaxation). The glass
transition Tc predicted by MCT is located somewhat above
Tg. This ideal glass transition is described as an ergodicity-
breaking transition with a corresponding divergence of the
viscosity according to η ∝ ½T − Tc�−γ , which describes the
temperature dependence of fragile glasses above Tc as well
as the VFT law. Below Tc, real glasses do not show a
divergence of the viscosity, but the crossover to the high-EA
activation law. The activation energy of the viscosity in this
regime is not equal to that of the diffusivity, a phenomenon,
which has been called Stokes-Einstein violation [17,18] for
which an explanation will be given in the present treatment.
There is evidence that in this temperature regime relaxation
processes are governed by a free-energy “landscape,”
implying a broad distribution of activation barriers, which
have to be overcome for single relaxational steps [19–21].
This spatial heterogeneity of activation barriers implies a
strong heterogeneity of the local relaxation processes
(dynamical or relaxational heterogeneity). Dynamical
heterogeneities are not only visible in the relaxation spectra
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but also in the vibrational spectra (elastic heterogeneity),
leading to vibrational anomalies, which violate Debye’s
predictions based on elasticity theory [22–26].
In the present treatment, which addresses the temper-

ature regime near and below Tg, we assume that the
dynamical heterogeneities are frozen in. Contrary to other
treatments based on such an assumption [27–29], we do not
assume that the relaxation processes occur in parallel. To
achieve this goal, we use the coherent-potential approxi-
mation (CPA) [30–32], which is known to capture the
percolation aspects, which are inherent in heterogeneous
transport: the conductivity of a strongly heterogeneous
system is neither obtained by averaging over the micro-
scopic resistances (series equivalent circuit), nor by
averaging the conductances (parallel equivalent circuit),
but the current follows the percolative path of least
resistance.
Applying our theory to both the heterogeneous viscosity

and diffusivity problem, we are able to put our finger on the
fact that these dynamical problems involve different per-
colative aspects, which then lead to the Stokes-Einstein
violation. These aspects have been addressed indirectly
recently by the hard-sphere glass-transition theory [33].
At finite frequencies our heterogeneous viscoelastic CPA

theory develops its power in describing the strong asym-
metry of the α relaxation peak in terms of the distribution of
the free-energy barriers. The increase of the loss modulus
on the low-frequency side of the α peak as G00ðωÞ ∝ ηðTÞω
and hence its time-temperature superposition behavior is
included automatically. The high-frequency part of the
alpha maximum is nonuniversal in accordance with experi-
ment. It reflects the details of the barrier distribution of the
material, as anticipated by the seminal ideas of Goldstein
[19] and Johari [9].
At very high frequencies, i.e., below and near the Debye

frequency, our theory reduces to the CPA version of
heterogeneous elasticity theory, which accounts for the
vibrational anomalies of glasses [32].
We now start the description of our model in detail. We

consider a viscoelastic fluid in which both the viscosity
ηðrÞ and the high-frequency shear modulus GðrÞ are
assumed to vary in space. The local viscosity is assumed
to be governed by a local free energy ln½ηðrÞ=η0� ¼
FðrÞ=kBT with FðrÞ ¼ EðrÞ − TSðrÞ. E is the local energy
barrier and S is a multiexcitation entropy [34,35], which is
related to E by a compensation (Meyer-Neldel) rule
[34–37], SðrÞ=kB ¼ αEðrÞ, so that we have ηðrÞ ¼
η0eβeffEðrÞ with βeff ¼ ½kBT�−1 − α. The activation barrier,
in turn, is assumed [3,4] to be related by EðrÞ ¼ VGðrÞ to
the local high-frequency shear modulus, where V is an
activation volume. The spatial fluctuations of E are
assumed to be statistically independent; i.e., we work in
terms of a coarse-grained model over volumina of size ξ,
which is the correlation length of the fluctuations [32]. The
statistics is then given by a common density PðEiÞ, where

Ei is the average value of EðrÞ inside a coarse-graining
volume, centered at ri.
We start working out our theory by writing down the

linear Navier-Stokes equations in frequency space
(∂=∂t → s ¼ −iωþ ϵ) for this model,

sρmvlðr;sÞ¼
K
s
∇l∇ ·v þ 2

X
j

∇jηeffðr;sÞV̂ljðr;sÞ: ð1Þ

vlðr; sÞ are the Cartesian coefficients of the Eulerian
velocity field, K is the bulk modulus [38], and V̂ is the
traceless shear strain rate tensor bVlj ¼ Vlj − 1

3
TrfVδljg

with Vlj ¼ 1
2
ð∇lvj þ∇jvlÞ. The space-dependent

Maxwellian viscoelastic term is given by

1

ηeffðr; sÞ
¼ s

Geffðr; sÞ
¼ 1

ηðrÞ þ
s

GðrÞ : ð2Þ

Replacing in Eq. (1) ηeff by Geff=s and vi by sui, where ui
are the dynamic displacements, one obtains the equations
of motion of linear elasticity with a space- and frequency-
dependent shear modulus. These equations can be solved
approximately in coherent-potential approximation [32],
giving a macroscopic frequency-dependent shear
modulus GðωÞ ¼ sηðωÞ ¼ G0ðωÞ − iG00ðωÞ, where
G0ðωÞ ¼ ωη00ðωÞ is the storage modulus and G00ðωÞ ¼
ωη0ðωÞ is the loss modulus. ηðsÞ ¼ η0ðωÞ þ iη00ðωÞ is the
frequency-dependent viscosity. The self-consistent CPA
equations for ηðsÞ are [32]

ηðsÞ ¼
�

ηðiÞeffðsÞ
1þ ~ν

3
½ηðiÞeffðsÞ − ηðsÞ�ΛηðsÞ

�
i

; ð3aÞ

ΛηðsÞ ¼
3

k3ξ

Z
kξ

0

dkk2
� 4

3
sk2

s2 þ ½K þ 4
3
sηðsÞ�k2

þ 2k2

sþ ηðsÞk2
�

→
s→0 2

ηðsÞ : ð3bÞ

~ν is an adjustable number of order unity, related to
the ultraviolet cutoff kξ of the theory [32]. ηðiÞeffðsÞ is the
local effective viscosity, i.e., Eq. (2), averaged over a
coarse-graining volume, centered around ri. h…ii denotes
an average with respect to the local energies Ei. The explicit
form of ηðiÞeff is

1

ηðiÞeffðE; sÞ
¼ 1

η0
e−βeffE þ sV

E
: ð4Þ

We emphasize that in the very-high-frequency regime,
where viscous effects become irrelevant, our theory reduces
to heterogeneous elasticity theory [26,32], which describes
the high-frequency vibrational anomalies of glasses
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associated with the boson peak [see the discussion of
Eqs. (8)–(10) and Fig. 2 at the end of this Letter]. This
means that the present theory describes both dynamical and
vibrational heterogeneities.
As we want to compare in the following the behavior of

the heterogeneous viscosity with diffusive single-particle
motion in the same energy landscape, (heterogeneous
diffusivity) in the ω → 0 limit, we quote the CPA equations
for this problem from Köhler et al. [32],

DðsÞ ¼
�

DðiÞ

1þ ~ν
3
½DðiÞðsÞ −DðsÞ�ΛDðsÞ

�
i

; ð5Þ

with ΛDðsÞ ¼ ð3=k3ξÞ
R kξ
0 dkk4½sþDðsÞk2�−1. HereDðsÞ is

the dynamic diffusivity and DðiÞ ¼ D0e−βeff;DE
ðiÞ

are the
local diffusivities with βeff;D ¼ ½kBT�−1 − αD [39].
In the s → 0 limit, Λη → 2=ηðs ¼ 0Þ≡ 2=η and

ΛD → 1=Dðs ¼ 0Þ≡ 1=D, and we obtain for the ω → 0
limit of the viscosity and diffusivity the CPA equations,

2~ν

3
¼

Z
∞

0

dEPðEÞ 1

ð 3
2~ν − 1Þ η

ηðiÞ þ 1
; ð6aÞ

~ν

3
¼

Z
∞

0

dEPðEÞ 1

ð3
~ν − 1Þ D

DðiÞ þ 1
: ð6bÞ

If the macroscopic viscosity and diffusivity are para-
metrized as η ∝ eβeffμη , D ∝ e−βeff;DμD , the integrands in
Eqs. (6a) and (6b) become step functions θðE − μηÞ and
θðμD − EÞ, respectively, in the low-temperature limit, and
we arrive at

1 −
2~ν

3
¼

Z
μη

0

dEPðEÞ ~ν

3
¼

Z
μD

0

dEPðEÞ: ð7Þ

This means that (within CPA) both the diffusivity and
viscosity with spatially fluctuating activation energies
acquire an Arrhenius behavior, independently of the details
of PðEÞ. This result is well known for the diffusivity and
(for charged carriers) conductivity in disordered materials
[32,40]. It reflects the fact that the carrier looks for a path of
minimum resistance through the material, which is a
percolation path. In the percolation theory of hopping
conduction [40], the number ~ν=3 is the continuum perco-
lation threshold, which we now call pD. The analogous
quantity for the viscosity is pη ¼ 1 − 2pD, where the factor
2 can be traced back to the two transverse Cartesian degrees
of freedom of the shear motion [32]. As pointed out in
Köhler et al. [32], Eq. (5b) is also equivalent to an effective-
medium theory for a conductance network, where the
parameter pD is 2=Z, Z being the functionality of the
network. So we note the result that, except for the special
case pD ¼ 1=3, the activation energy for diffusion and

viscosity should be different. The explanation is that the
percolation process for a single particle and cooperative
motion in three dimensions is different. This is nicely
described by the CPA in the ω → 0 limit. If we take for
pD ¼ ~ν=3 the three-dimensional continuum percolation
threshold ≈0.3, we arrive at pη ¼ 1–2pD ¼ 0.4. Using
Eqs. (7), we obtain for a Gaussian distribution centered at
E0 with width parameter σ=E0 ¼ 0.3 the activation ener-
gies μD=E0 ¼ 0.843 and μη=E0 ¼ 0.925; i.e., the ratio is
μD=μη ¼ 0.91. This ratio (Einstein-violation parameter)
depends on dimensionality through pD, but it is nonuni-
versal, as it depends on (and becomes smaller with) the
shape of the distribution.
We now turn to the finite-frequency regime. This is the

regime around and above the alpha peak. In this frequency
regime, the function ΛηðsÞ can be replaced by its low-
frequency limit ΛηðsÞ ¼ ½2=ηðsÞ�. Below the alpha peak,
the shear loss modulus is just given by G00 ¼ ωηð0Þ, which
describes the linear increase ofG00 below the α peak. Such a
behavior is (to the best of our knowledge) obeyed in all
mechanical relaxation data [41].
As stated above, the frequency-dependent viscosity ηðsÞ

depends on the detailed shape of PðEÞ. A good choice for
this function is a Gaussian, truncated at E ¼ 0 [42], i.e.,
PðEÞ ¼ P0θðEÞe−ðE−E0Þ2=2σ2 , because the local shear
moduli in simulations of metallic [43,44] and other glasses
with soft-sphere interaction [25,45,46] were shown—by
evaluating the statistics—to exhibit a Gaussian distribution.
In Fig. 1, we show the loss modulus G00ðωÞ ¼ η0ðωÞω as a
function of the rescaled frequency ~ω ¼ ωηð0Þ. If the main α
relaxation peak remains near ~ω ¼ 1, this means that the
time-temperature superposition principle is obeyed. We
compare our calculations for various values of the param-
eters βeffE0 and σ=E0 with a recent compilation of
relaxation data of bulk metallic glasses near the calori-
metric glass transition Tg [10]. In order to demonstrate the
robustness of the results with respect to the shape of PðEÞ,
we included also a flat distribution PðEÞ ¼ 0.5θðE½2 − E�Þ.
We see that the data fit best to βeffE0 ¼ 26 and σ=E0 ¼ 0.3.
As the activation energies of the viscosity for bulk metallic
glasses are in the 3 eV range and the glass transition is
around 700 K [47], we arrive at a relative inverse temper-
ature of Ea=kBT ≈ 50, which leaves for the Meyer-Neldel
entropy parameter a value of α=EA ≈ 24, where we used
our CPA result Ea=E0 ≈ 1. In the inset of Fig. 1, we show
also relaxation data of two organic glasses [11], one
inorganic glass [12], and one highly disordered mineral
[13] in order to demonstrate the generality of our approach.
In the beginning, we mentioned that at high frequency

our theory becomes equivalent to the CPA version of
heterogeneous-elasticity theory [26,32], which explains
the boson-peak-related glassy vibrational anomalies in
the THz range. In this regime, the viscosity term in
Eq. (2) is negligible, leaving the fluctuating shear modulus
GðriÞ≡ GðiÞ. In terms of the frequency-dependent shear
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modulus GðsÞ ¼ sηðsÞ and the susceptibility function
ΛGðsÞ ¼ ΛηðsÞ=s, the CPA equation (3a) takes the form

GðsÞ ¼
�

GðiÞðsÞ
1þ ~ν

3
½GðiÞðsÞ − GðsÞ�ΛGðsÞ

�
i

; ð8Þ

from which we can calculate the density of vibrational
states gðωÞ and the specific heat CðTÞ as

gðωÞ ¼ 2ω

3π
Im

�
3

k3D

Z
kD

0

dkk2
�

1

s2 þ ½K þ 4
3
GðsÞ�k2

þ 2

s2 þ GðsÞk2
��

; ð9Þ

CðTÞ ∝
Z

∞

0

dωgðωÞðω=TÞ2 eℏω=kBT

½eℏω=kBT − 1�2 : ð10Þ

Here, kD is the Debye wave number. In Fig. 2, we show a
calculation of the reduced specific heat CðTÞ=CDðTÞ ∝
CðTÞ=T3 according to the CPA equations (8) to (10),
together with experimental data of the same bulk metallic

glasses referred to in Fig. 1. We used the same width-
maximum relation σG=G0 ¼ σ=E0 as in the calculations of
the blue lines in Fig. 1. The other parameters are given in
the caption. This calculation and the agreement to the data
demonstrates that the same CPA theory can be used for the
relaxation spectrum and the vibrational anomalies.
In conclusion, we can state that we have established a

combined theory for the ω → 0 limit of the viscosity, the
low-temperature asymmetric α relaxation and the high-
frequency vibrational anomalies within a unified frame-
work. This has been achieved by assuming that the viscous
and elastic coefficients of Maxwell’s theory of viscoelas-
ticity fluctuate in space according to a frozen distribution of
activation barriers. We have found an explanation of the
discrepancy of the activation energies for diffusion and
viscosity in terms of the different percolative properties of
the two heterogeneous transport problems and a theory for
the low-temperature alpha relaxation below the glass
transition.
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