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We present a new type of self-imaging phenomenon: self-imaging along curved trajectories. Unlike
the Talbot effect, where self-imaging occurs for periodic wave patterns propagating along a straight line,
here the field is generally not periodic and is self-imaged along curved trajectories. In the paraxial regime,
self-imaging along a parabolic trajectory can ideally go on indefinitely. In the nonparaxial regime the
self-imaging is along a circular trajectory and lasts as long as the beam bends. We demonstrate this
accelerating self-imaging effect experimentally, and discuss generalizations to higher dimensions.
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In the Talbot effect, first observed in 1836 [1], a periodic
paraxial optical field pattern self-reproduces itself at con-
stant intervals. The effect was explained by Lord Rayleigh
in 1881 [2], who gave the mathematical conditions for
the effect, which is also called self-imaging, to occur. The
Talbot effect has many manifestation in optics, from
interferometry and optical testing [3], to optics in parity-
time (PT ) symmetric system [4], quantum optics [5],
waveguide arrays [6], and high numerical aperture, non-
paraxial illumination [3], and can also appear with inco-
herent light under certain conditions [3,7]. The Talbot effect
has also attracted research interest in other physical fields
such as matter waves [8,9], plasmons [10], and x-ray phase
imaging [11]. Thus far, research on the Talbot effect and
self-imaging in general has strictly dealt with self-imaging
along a straight propagation line [12–14]. That is, the field
is reproduced strictly in the plane normal to the propagation
direction. Unrelated to self-imaging, recent years have seen
a surge in the study of accelerating beams—optical beams
whose trajectory is bent, as a consequence of interference
effects. These accelerating beams, first conceived in the
context of quantum mechanics in 1979 [15], were intro-
duced into the optical domain in 2007 [16,17] and
subsequently attracted much attention [18]. Applications
of such accelerating beams include particle manipulation
[19,20], imaging and microscopy [21,22], accelerating
temporal pulses in dispersive media [23,24] and much
more. The acceleration is not limited to small angles: in
2012, self-accelerating wave packets of Maxwell’s equa-
tions, that is, beams that bend almost all the way to 180°,
were predicted [25] and demonstrated soon thereafter
[26–28]. Accelerating beams were also shown experimen-
tally with matter waves (a quantum wave packet of a single
electron), using an electron microscope [29]. It is therefore
natural to ask whether it is possible to have an accelerating
self-imaging effect.
Here, we present, theoretically and experimentally, the

Airy-Talbot effect: self-imaging of wave packets along
accelerated (bent) trajectories. While the concept seems

similar to the well-known Talbot effect, the underlying
physics is different. Unlike the Talbot effect, the self-
imaging accelerating wave packet need not be periodic, but
instead can have an almost arbitrary shape and can be
described as a sum of fundamental accelerating beams. We
present examples in two regimes. The first regime is the
paraxial regime, where the fundamental accelerating beams
are Airy beams, and the acceleration is on a parabolic
trajectory. In this case, the ideal, infinite energy beams can
self-image indefinitely, while finite energy beams can self-
reproduce a finite number of times, in clear correspondence
to the Talbot effect. Following the theoretical part, we also
demonstrate the accelerating self-imaging phenomenon in
the paraxial regime experimentally. The second regime is
the nonparaxial regime, where the fundamental accelerat-
ing beams display a half-Bessel-function shape, and the
acceleration is along a half circle. In the nonparaxial
regime, the self-imaging is azimuthal—the beam self-
reproduces along planes of constant angle. As such, self-
imaging is fundamentally limited to a finite number of
times, depending on the angular distance between the
self-reproducing planes. In both regimes, we provide the
both the criteria for accelerating self-imaging to occur, and
for the period of self-imaging.
The Talbot effect, which is the self-imaging of periodic

optical fields, has been studied extensively in various
different configurations. It has been generalized to inco-
herent beams [3] and to the self-imaging of optical fields
that are not necessarily periodic [12,13]. In all of these
cases, the self-imaging was along a straight line. That is, the
optical field reproduces itself at constant intervals, without
transversal shifts. In order for the field to self-reproduce
along a straight line, its spatial spectrum must be associated
with kz values at constant intervals kz;q ¼ kz;0 − qð2π=zMÞ,
where kz;0 is a positive real constant, q is a natural number,
and zM is the longitudinal period in which the field
self-images. The field (ignoring the carrier phase of kz;0,
and using only one dimension for simplicity) can then be
written as ψðx; zÞ ¼ P

q aqðxÞ expð−iq2πz=zMÞ, which is
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clearly periodic along z with period zM. In the paraxial
regime, this condition can be met by requiring the field to
be periodic, meaning that its transverse spatial spectrum
contains wave numbers at constant intervals kx ¼ mkx;0,
wherem is an integer and kx;0 is a constant. Then, using the
paraxial dispersion relation for a monochromatic field of
wavelength λ, kz ¼ ðλ=πÞk2x, it is clear that the condition on
kz is met. This self-imaging of periodic fields is called the
Talbot effect.
In order to generalize the self-imaging phenomenon to

curved trajectories, we first move to a reference frame
moving along the said trajectory. Let us begin with the
paraxial regime, where we start with the paraxial wave
equation written in normalized coordinates in one trans-
verse dimension:

i∂sψ þ 1

2
∂2
uψ ¼ 0. ð1Þ

We move to a frame of reference along a parabolic
trajectory by writing u0 ¼ u − 1

4
s2, s0 ¼ s, and ψðu;sÞ¼

ϕðu0;s0Þexp½ið1
2
Þu0s0 þ ið 1

24
Þs03� [30,31], and get the paraxial

equation in the accelerating frame of reference

i∂s0ϕ − 1

2
u0ϕþ 1

2
∂2
u0ϕ ¼ 0. ð2Þ

The eigenfunctions of Eq. (2) with eigenvalue 1
2
Δ

are Airy functions, shifted in Δ: ϕΔðu0; s0Þ ¼
Aiðu0 − ΔÞ expð− 1

2
iΔs0Þ. An example of such a field, in

the original frame of reference, can be seen in Fig. 1(a).
Now, in order to find waves that self-image, we seek
solutions whose spatial spectrum consists of propagation
constants at constant intervals—in an analogous way to
the Talbot effect. We find, in the accelerating frame of
reference, the general solution

ϕðu0; s0Þ ¼
X
n

cnAiðu0 − ΔnÞ exp
�
−i 1

2
nΔs0

�
; ð3Þ

where the cn are arbitrary coefficients. It is clear that
the field in Eq. (3) self-images at constant intervals of
s0q ¼ ð4π=ΔÞq. Moving back the field in Eq. (3) to the
original frame of reference, it is now written as

ψðu; sÞ ¼ exp

�
− i
12

s3 þ i
2
us

�

×
X
n

cnAi(u − Δn −
�
s
2

�
2

) exp

�
− 1

2
inΔs

�
;

ð4Þ
and the intensity pattern is

Iðu;sÞ ¼
�����
X

n
cnAi(u−Δn−

�
1

2
s

�
2

)exp

�
−1

2
isΔn

������
2

:

ð5Þ

In other words, at every two planes whose distance is an
integer multiple of , the intensity distribution repeats itself,
shifted along the parabolic trajectory u − ð1

2
sÞ2 ¼ const.

The field itself self-reproduces up to a global phase factor,
as can be seen in Eq. (4). An example of a field with
accelerated self-imaging, as described by Eq. (4), is given
in Figs. 1(b) and 1(c). Figure 1(b) depicts the intensity
pattern for a field comprised of a superposition of 20 Airy
beams, shifted with respect to one another, and each
multiplied by a different random coefficient. The value
of the transversal shift is Δ ¼ 3. In order to visualize the
self-imaging property, we plot the field at three planes:
z ¼ Γ, 2Γ, and 3Γ, marked by dashed lines in Fig. 1(b). The
three plots are presented in Fig. 1(c), shifted along the
parabolic trajectory to align them, making the comparison
clearer. It can be clearly seen that despite the seemingly
random pattern, the intensity is identical at all three planes.
This self-imaging phenomenon repeats indefinitely in the
case of ideal, infinite-power Airy beams. If we use finite
power Airy beams, the self-imaging persists as long as
the beam maintains its shape-preserving self-accelerating
properties. Hence, thus far we have presented self-imaging
of nonperiodic paraxial fields that self-reproduce along
parabolic trajectories.
An alternative way to achieve the result of Eq. (4) is to

look at a field whose spatial spectrum is an arbitrary
periodic function gðkÞ such that g½kþ ð2π=ΔÞ� ¼ gðkÞ:

u 

u 

s 0 Γz 2Γz 3Γz 

(b) 

(c) 

(a) 

u 

s 

FIG. 1 (color online). (a) Intensity plot of the one-
dimensional Airy beam. (b) Intensity plot of the beam of the
form of Eq. (4), exhibiting the Airy-Talbot effect. The beam is
comprised of an addition of 20 Airy beams, each multiplied by a
random coefficient, and shifted along u with Δ ¼ 3, correspond-
ing to a longitudinal periodicity of Γ ¼ 4π=3. (c) Intensity cross
sections at three planes of self-imaging, z ¼ Γ, 2Γ, and 3Γ,
marked by dashed lines in (b). The cross sections are shifted
along the parabolic trajectory in order to make the comparison
clearer.
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~ϕðkÞ ¼ gðkÞ ¼
X
n

cn expð−iknΔÞ: ð6Þ

The field in Eq. (6), if we choose to treat the Fourier
plane as s ¼ 0 (which can be easily done with a lens),
self-images according to the Talbot effect. Now, we super-
impose on the field a cubic phase factor of expð1

3
ik3Þ,

which is known to cause self-acceleration after the Fourier
transform [16,30], meaning the spatial spectrum of our
field is now

~ϕðkÞ ¼ exp

�
1

3
ik3

�X
n

cn expð−iknΔÞ: ð7Þ

Fourier transforming the spatial spectrum in Eq. (7), we
can write

ψðu; 0Þ ¼ ℱf ~ϕg ¼
X
n

cnAiðu − ΔnÞ: ð8Þ

By propagating the field in Eq. (8) to any s > 0 we can
immediately get the result in Eq. (4).
We now demonstrate the paraxial Airy-Talbot effect

experimentally. In this case, it is most convenient to use
the formalism presented in Eq. (7) to generate accelerating
self-imaging beams with nonperiodic fields. In the experi-
ment we demonstrate accelerated self-imaging in one
transversal dimension. We generate an Airy beam by using
a spatial light modulator (SLM), which imposes a cubic
phase on the beam. To create the Airy-Talbot beam, we
choose the periodic function g such that it is a pure phase:
g ¼ expðiγÞ. Thus, the overall phase imposed by the
SLM is

φðxsÞ ¼
1

3
d30x

3
s þ γðxsÞ: ð9Þ

Here, xs is the coordinate on the SLM and
γðxsÞ ¼ γðxs þDÞ. Using a lens with focal length f, the
beam at plane z ¼ 0 is the Fourier transform of a field with
a phase profile described in Eq. (9), and can be written as

ψðxÞ ¼
X
n

cnAi

�
x
x0

− Δn
�
; ð10Þ

where x0 ¼ d0Df=2π and Δ ¼ 2π=d0D. In our experi-
ment, we use f ¼ 250 mm, D ¼ 0.9 mm, and d0 ¼
2.3 mm−1 with wavelength λ ¼ 532 nm. A sketch of the
experimental system is plotted in Fig. 2(a). In our case, the
period is Γ ¼ 115 mm. Figure 2(b) shows a side view of
the intensity profile, and Fig. 2(c) presents the cross
sections at three different planes. Because of the intensity
attenuation originating from the fact that our beam has
finite power, we renormalize the intensity at each plane for
better visibility of the results. We can see that the intensity
profile, despite being noisy and seemingly random, repeats
itself at those specific intervals.
Thus far we have discussed the Airy-Talbot effect in one

transversal dimension, and the extension to two transversal

dimensions is in order. The fundamental accelerating beam
can be generated using a separation of variables, by a
multiplication of two Airy beams, one in each coordinate
[16,17]. When choosing the accelerating trajectory to be
u − ðs2=2 ffiffiffi

2
p Þ ¼ const, we get

ψðu; v; sÞ ¼ Ai

�
uþ vffiffiffi

2
p − 1

4
s2
�
Ai

�
u − vffiffiffi

2
p − 1

4
s2
�

× exp

�
− 1

6
is3 þ 1ffiffiffi

2
p us

�
: ð11Þ

If we want to follow the same prescription as in the one-
dimensional case, we essentially have two options: shift the
solution in Eq. (11) along the u direction, or along the v
direction. By looking at the phase factor in Eq. (11), we see
that by summing different solutions, shifted at constant
intervals Δ in u, we will get accelerating self-imaging at
intervals along s that are equal to Γ ¼ ð2 ffiffiffi

2
p

π=ΔÞ. This is a
direct analogue to the one-dimensional case discussed
above. However, shifting in the v direction yields different
results. Since the phase factor in Eq. (11) does not include
v, adding shifted solutions does not change the self-
similarity property at all, meaning that adding solutions
that are shifted arbitrarily in v maintains the self-similarity
property of Eq. (11) for all s values, and not only at
constant intervals. Mathematically, summing solutions
along v with a continuous spread of allowed shift values
can be written as

FIG. 2 (color online). Experimental realization of the Airy-
Talbot effect. (a) Sketch of the experimental setup. (b) Intensity
plot in the xz plane of the beam exhibiting the Airy-Talbot effect.
The beam was generated using a SLM, by imposing a periodic
phase profile in addition to the cubic phase profile. (c) Intensity
cross sections along three planes of self-imaging, marked by
dashed lines in (b). In order to make the comparison clearer,
the cross sections are shifted along the parabolic trajectory. In
addition, the intensity was normalized to account for the intensity
attenuation caused by residual diffraction broadening due to the
finite aperture of the beam.

PRL 115, 013901 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JULY 2015

013901-3



ψðu;v;0Þ¼
Z

fðβÞAi(
uþðv−βÞffiffiffi

2
p )Ai(

u− ðv−βÞffiffiffi
2

p )dβ;
ð12Þ

where fðβÞ is an arbitrary function. Thus, any arbitrary
wave form, given by the function fðβÞ and Eq. (12), will be
self-similar along a curved trajectory, for any s. The result
in Eq. (12) is identical to the main result of Ref. [30].
Finally, we proceed to a theoretical examination of

accelerating self-imaging under nonparaxial conditions.
Accelerating solutions of Maxwell’s equations were dis-
covered in Ref. [25], and are written as “half-Bessel-
functions” Jþα ðkx; kzÞ, where k is the wave number and
α is the integer order of the Bessel function. Writing our
field as a sum of Jþα ðkx; kzÞ with different α values at
constant intervals and arbitrary coefficients yields a func-
tion that is periodic in the angle θ ¼ arctanðz=xÞ. As such,
because the beam’s maximal bending angle is 180°, the
self-imaging will persist only a finite number of times. An
example is presented in Fig. 3, where half-Bessel-function
solutions with α ranging from 450 to 650 are added, with
random coefficients. In Fig. 3(a) the intensity pattern in the
x-z plane is plotted. In this case, the period is θ ¼ π=10.
The two dashed lines in Fig. 3(a) mark two angles along
which the intensity pattern self-images. The intensity along
these lines is plotted in Fig. 3(b), where it can be clearly
seen that the intensity self-images at those angles. Note that
in the nonparaxial regime self-imaging is not perfect due to
the fact that the self-similarity of the fundamental accel-
erating beam, the half-Bessel-function, is not perfect [25].
In conclusion, we have presented self-imaging along

curved trajectories. That is, self-accelerating beams that
self-reproduce periodically, in spite of the fact that the field
is not necessarily periodic or the fact that it does not consist
entirely of discrete values of propagation constants. In the
paraxial regime, these wave packets are designed by adding
shifted copies of the fundamental accelerating beam, with
arbitrary coefficients. The arbitrary intensity distribution is
then defined by the shift period and by a set of arbitrary
coefficients. We have shown this effect theoretically and

experimentally, and have discussed the generalization to
higher dimensions and to nonparaxial propagation. Finally,
we note that it is readily possible to generailize this effect
to fields that accelerate along other trajectories, for exam-
ple, elliptic ones, etc. [28,32,33]. This Airy-Talbot effect
provides a deeper insight into the subject of accelerating
and self-similar beams, and can be used as an improvement
to optical testing techniques that use the Talbot effect.
Likewise, the effect can be used in florescence microscopy,
in the spirit of Ref. [21], to facilitate multiple excitations
simultaneously. We thank Y. Plotnik for fruitful discus-
sions. This work was supported by the ICORE Israeli
Center of Excellence “Circle of Light”, the Israel Science
Foundation, and the Binational USA-Israel Science
Foundation.
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