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Thermalization of isolated many-body systems is demonstrated by generalizing an approach originally
due to von Neumann: For arbitrary initial states with a macroscopically well-defined energy, quantum
mechanical expectation values become indistinguishable from the corresponding microcanonical expect-
ation values for the overwhelming majority of all sufficiently late times. As in von Neumann’s work, the
eigenvectors of the Hamiltonian and of the considered observable are required to not exhibit any specially
tailored (untypical) orientation relative to each other. But all of von Neumann’s further assumptions about
the admitted observables are abandoned.
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The universal and irreversible tendency of nonequili-
brium states towards thermal equilibrium is an everyday
experience in the macroscopic world, but, in spite of more
than a century of theoretical efforts, it has still not been
satisfactorily reconciled with the basic laws of physics,
which govern the microscopic world and which are
fundamentally reversible [1]. The first quantum mechanical
exploration of this problem is due to von Neumann [2], was
unfortunately misunderstood for decades, but has recently
been rehabilitated in a very enlightening commentary by
Goldstein, Lebowitz, Tumulka, and Zanghì [3]. A major
remaining bottleneck of von Neumann’s approach is his
notion of “macro-observer” or “macroscopic measure-
ment,” stipulating that all relevant observables can be
approximated by commuting Hermitian operators with
very high-dimensional common eigenspaces [2]. As an
alternative, Goldstein et al. [3,4] suggested to consider
“macroscopic observables” with the additional property
(excluded in von Neumann’s original treatment) that one of
those eigenspaces is overwhelmingly large compared to all
the others. In our present work, all such restrictions with
respect to the considered observables are abandoned.
As in Refs. [2–4], we consider an isolated many-body

system, whose energy E is known up to an uncertainty δE,
which is small on the macroscopic but large on the micro-
scopic scale. The system is modeled by a Hamiltonian H
with eigenvalues En and eigenvectors jni, n ∈ N. System
states (pure or mixed) are described by density operators ρ,
evolving in time according to the usual Liouville–von
Neumann equation _ρðtÞ ¼ i½ρðtÞ; H�=ℏ. Observables are
modeled by Hermitian operators A with expectation values
hAiρ ≔ TrfρAg. The preset energy interval ½E;Eþ δE�
defines an energy shell, namely, the Hilbert spaceH spanned
by all jni with En ∈ ½E;Eþ δE�. Without loss of generality,
we assume that the corresponding labels are n ¼ 1; 2;…; D.
For a macroscopic system with, say, f ≈ 1023 degrees of
freedom, the dimensionalityD ofH is exponentially large in
f [3], symbolically indicated as

D ≈ 10OðfÞ: ð1Þ
By definition, the probability to encounter a system

energy outside ½E;Eþ δE� is negligibly small and is
henceforth idealized as being strictly zero. As a conse-
quence, the diagonal matrix elements (“level populations”)
ρnn ≔ hnjρjni vanish for all n > D, implying with Cauchy-
Schwarz’s inequality that ρmn ¼ 0 if m > D or n > D.
Denoting by P the projector onto H, the projection (or
restriction) of A onto H takes the form ~A ≔ PAP and
analogously ~H ≔ PHP, etc. (note that ~ρ ¼ ρ). It readily
follows that TrfρAg ¼ Trfρ ~Ag and that ~H yields the same
time evolution of ρðtÞ as H. Hence we can and will restrict
ourselves to the energy shell H from now on but, for
convenience, omit the tilde symbols. Accordingly, P
becomes the identity operator on H, and the microcanon-
ical density operator follows as ρmc ≔ P=D with expect-
ation values hAimc ≔ TrfρmcAg.
The problem of thermalization is to show that hAiρðtÞ

evolves towards hAimc for arbitrary (possibly far from
equilibrium) initial conditions ρð0Þ∶H → H. It is well
known that this is impossible without additional assump-
tions on H and A. With respect to H, we adopt von
Neumann’s assumption [2] that the energy differences
Em − En are finite and mutually different for all pairs
m ≠ n. Excluding nongeneric cases with additional con-
served quantities (besides H), e.g., due to (perfect) sym-
metries or noninteracting subsystems, the validity of this
assumption is by now commonly accepted [4–11].
Moreover, one expects that even considerably weaker
assumptions will do [12–15].
Denoting by amax and amin the largest and smallest,

respectively, among the D eigenvalues of A, the range of A
is defined as ΔA ≔ amax − amin. Furthermore, in any real
(or numerical) experiment, hAiρ can be determined only
with some finite accuracy δA. In practice, we thus can focus
on measurements which yield at most, say, 20 relevant
digits, i.e.,
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δA ≥ ΔA10
−20: ð2Þ

The eigenvectors of H and of A are related by some
unitary basis transformation U. A key point of von
Neumann’s approach is the assumption that these two
eigenbases do not exhibit any “special orientation” relative
to each other [2,16]; i.e., the actualU is “typical” [3] among
all possible unitary transformations U∶ H → H in the
following sense: If a certain property can be shown to
hold for the vast majority of U’s (uniformly distributed
according to the Haar measure [2–4,16]), then this property
is supposed to hold for the actualU as well, unless there are
special reasons to the contrary. Denoting by μUðXÞ the
fraction (normalized measure) of all U’s exhibiting a
certain property X, a μUðXÞ value close to unity (zero) is
thus assumed to generically imply (exclude) property X for
the actual system. While a more rigorous justification is
clearly very difficult, intuitively such a “typicality” argu-
ment is very convincing: If we imagine A as fixed and H
as arising by randomly sampling its eigenvectors via U
[4,16,17], the argument is essentially tantamount to the
common lore of random matrix theory [3], which is well
known to be extremely successful in practice [18]. In
particular, μUðXÞmay be formally viewed as the probability
of observing property X for a randomly sampled H (or U),
however keeping in mind—exactly as in random matrix
theory—that there is no random sampling procedure in the
real physical problem under consideration [3,4]. In pass-
ing, we note that von Neumann actually adopted the
complementary viewpoint of considering H as fixed while
varying the eigenvectors of A [2].
By exploiting the above mentioned common assump-

tions about the energy eigenvalues En [2,4–11], one can
infer [6–12] (see also [19]) that the quantity

σ2ðtÞ ≔ ½hAiρðtÞ − hAiρ̄�2 ð3Þ

satisfies the relations

σ2ðtÞ ¼
XD
m≠n

jρmnð0Þj2jAmnj2 ≤ max
m≠n

jAmnj2; ð4Þ

where Amn ≔ hmjAjni, ρmnð0Þ ≔ hmjρð0Þjni, and the over-
bar indicates an average over all times t ≥ 0. In particular,
ρ̄ ≔ ρðtÞ is an auxiliary density operator with matrix
elements ρ̄mn ¼ δmnρnnð0Þ, sometimes named the diagonal
or generalized Gibbs ensemble [21]. The so-called eigen-
state thermalization hypothesis (ETH) conjectures that, for
a many-body system with f ≫ 1 degrees of freedom,
typical off-diagonal elements Amn in (4) are exponentially
small in f [8,21–25]. Within our present generalization of
von Neumann’s approach, we can actually prove that even
their maximum on the right-hand side in (4) is typically so
small that

μU
h
σ2ðtÞ ≥ ϵ

i
≤ 4 exp

�
−

ϵD
18π3Δ2

A
þ 2 lnD

�
ð5Þ

for any ϵ > 0. Besides (4), the key ingredient in deriving
this result is Levy’s lemma (see [26,27], and further
references therein), stating that

Prob½jgðϕÞ − hgij ≥ ϵ� ≤ 2 exp

�
−
ϵ2ðdþ 1Þ
9π3η2

�
ð6Þ

for randomly and uniformly distributed points ϕ on the
d-dimensional unit sphere Sd ⊂ Rdþ1 and any Lipschitz
continuous function g∶ Sd → R with Lipschitz constant η
and mean value hgi. Furthermore, any normalized jϕi ∈ H
of the form

P
D
n¼1 cnjni can be represented (via the real

and imaginary parts of the cn’s) as a point ϕ on the
ð2D − 1Þ-dimensional unit sphere. Finally, one can show
[27] that gðϕÞ ≔ hϕjAjϕi is Lipschitz continuous with
η ¼ ΔA and hgi ¼ hAimc. Observing that randomizing ϕ
is equivalent to randomizing U, we thus obtain

μU½jhϕjAjϕi − hAimcj ≥ ϵ� ≤ 2 exp

�
−

2ϵ2D
9π3Δ2

A

�
: ð7Þ

The remaining task is to connect this result for hϕjAjϕi
with the maximal jAmnj in (4). The details are rather
straightforward but tedious and thus provided as
Supplemental Material in [19]. As an aside, it follows that
von Neumann’s main technical achievement (Appendix of
Ref. [2]), as well as its further improvement by Pauli and
Fierz [28], is in fact quite closely related to Levy’s lemma
(see also [19]).
Equation (5) represents the first main result of our Letter.

By choosing, e.g., ϵ ¼ D−1=2δA2 in (5), it follows with (1)
and (2) that the time-averaged variance from (3) remains
extremely much smaller than δA2 for “almost all” U: The
fraction of the exceptional U’s is an unimaginably small
number of the order of 10−x with x ≈ 10OðfÞ, f ≈ 1023.
Furthermore, the mere existence of the infinite time average
in (4) implies that a similar estimate must also apply to
averages of σ2ðtÞ over finite time intervals ½0; T� with
sufficiently large T [3,7,13,14]. Finally, the smallness of the
latter time average implies (obviously or by Markov’s
inequality) that the averaged quantity (3) itself must be
exceedingly small for most times t ∈ ½0; T� [3,7,10,14].
For example, for our above choice ϵ ¼ D−1=2δA2 and
sufficiently large T, all the “bad times” t ∈ ½0; T� with
jhAiρðtÞ − hAiρ̄j ≥ δA add up to a set, whose Lebesgue
measure is smaller by (at least) a factor of the order
D1=4 ≈ 10OðfÞ [cf. (1)] than the measure of all t ∈ ½0; T�.
Altogether, we thus can conclude that, for the overwhelm-
ing majority of U’s, the difference hAiρðtÞ − hAiρ̄ remains
below the resolution limit δA for the vast majority of
times t contained in any sufficiently large time interval
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½0; T�. The same conclusion carries over to our actual
Hamiltonian H and observable A, given their eigenbases
are related by a typical transformation U as discussed
above. To establish quantitative bounds for T is a subject of
considerable current interest [8,13,29–32] but goes beyond
our present scope.
The salient point is that (5) holds independently of the

initial condition ρð0Þ. Once a pair H, A with a typical U is
given, the above implications of (5) thus apply to any ρð0Þ:
No matter how far from equilibrium the system starts out,
for almost all sufficiently late times it behaves practically as
if it were in the state ρ̄. Such an apparent convergence
towards a steady state has been denoted as equilibration,
e.g., in Refs. [9–15].
To demonstrate thermalization, we still have to show that

the difference between hAiρ̄ and hAimc is negligibly small.
Recalling the definitions of these two expectation values,
one readily sees that

B ≔ hAiρ̄ − hAimc ¼
XD
n¼1

ρnnð0Þ½Ann − hAimc� ð8Þ

and hence that

jBj ≤ max
n

jAnn − hAimcj: ð9Þ

Similarly as above Eq. (5), one part (actually the better
known part) of ETH consists in the conjecture that typical
differences Ann − hAimc are exponentially small in f
[8,21–25]. Within our present framework, we can prove
that even their maximum in (9) is typically so small that

μUðjBj ≥ ϵÞ ≤ 2 exp

�
−

2

9π3
ϵ2D
Δ2

A
þ lnD

�
ð10Þ

for any ϵ > 0. This represents our second main result,
whose derivation from (7) is quite obvious and is provided
in full detail as Supplemental Material in [19]. Once again,
it is crucial to note that (10) is independent of ρ̄ [and thus of
ρð0Þ]: Given a pair H, A with a typical U, it follows from
(8) and (10) that the difference hAiρ̄ − hAimc remains way
below the resolution limit δA for any ρ̄ [or ρð0Þ]. Finally,
upon considering A as fixed and H as a random matrix (see
above), we can conclude that von Neumann’s approach [2]
in fact anticipates the verification of ETH from Ref. [22]
within a random matrix theoretical framework; see
also [3,17].
One readily sees that the measure of all U’s which give

simultaneously rise to both equilibration, as discussed in
the paragraph below (7), and negligibly small B values
according to (10) is still extremely close to unity. Hence,
thermalization follows for any given pair H, A with a
generic relative orientation of the eigenbases, no matter
how the initial condition ρð0Þ is chosen. Along the same

lines, one can infer the simultaneous thermalization of
several (not necessarily commuting) observables [12,33],
as long as their number remains “reasonable” (e.g., smaller
than D).
Similarly as for U, let us now denote by V the unitary

basis transformation between the eigenvectors of the
density operator ρð0Þ and those of H. Likewise, μVðXÞ
now represents the fraction (normalized measure) of all
unitary transformations V∶ H → H which exhibit a certain
property X. Furthermore, the usual von Neumann entropy
is defined as S½ρ� ≔ −kBTrfρ ln ρg and satisfies 0 ≤ S½ρ� ≤
S½ρmc� ¼ kB lnD. Hence, the entropy range is ΔS ¼
kB lnD, and, similarly as in (2), experimentally resolvable
entropy differences δS can be assumed to satisfy δS ≥
qΔS ¼ qkB lnD for some small but still reasonable q value.
It follows that ρð0Þ entails a ρ̄ with the properties that
S½ρmc� − S½ρ̄� ≥ 0 and, as demonstrated in detail in
Supplemental Material [19],

μVðS½ρmc� − S½ρ̄� ≥ sÞ ≤ kB=s ð11Þ

for any s > 0. This is our third main result. By choosing
s ¼ δS and recalling that δS ≥ qkB lnD (see above), it
implies with (1) that the entropy of the diagonal ensemble
ρ̄, towards which the true ρðtÞ seems to equilibrate, differs
from the microcanonical entropy only by an unmeasurably
small amount for a generic ρð0Þ, i.e., one without a
specially tailored orientation of its eigenbasis relative to
that of H. We remark that already von Neumann demon-
strated a somewhat similar, so-called H theorem [2],
however, for a differently defined entropy, whose physical
relevance has been questioned, e.g., in Ref. [3]. Further
related but different results about entropies of diagonal
ensembles are also due to Ref. [34].
As shown in Refs. [9–11,19], an alternative upper bound

for the left-hand side of (4) is given by ðΔ2
A=4ÞTrfρ̄2g.

For the latter factor Trfρ̄2g, a similar relation as in (11) is
derived in Supplemental Material [19], yielding

μV
h
σ2ðtÞ ≥ ϵ

i
≤ Δ2

A=ð2ϵDÞ ð12Þ

for any ϵ > 0. By analogous arguments as in the discussion
of (5) in the paragraph below (7), this amounts to an
alternative demonstration of equilibration [7,9–11]. But in
contrast to (5), which applies to arbitrary ρð0Þ, provided the
relative eigenbasis orientation of H and A is generic, the
present findings now apply to arbitrary observables A,
provided the eigenbases of H and ρð0Þ are in a generic
constellation.
Finally, let us denote by W the unitary basis trans-

formation between the eigenvectors of the density operator
ρð0Þ and those of A and consider

σ2mcðtÞ ≔ ½hAiρðtÞ − hAimc�2: ð13Þ
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Similarly as before, we now can show (see Supplemental
Material [19]) that

μW ½σ2mcðtÞ ≥ ϵ� ≤ Δ2
A=ðϵDÞ ð14Þ

for arbitrary t and ϵ > 0 and that

μW

�
1

t2 − t1

Z
t2

t1

σ2mcðtÞdt ≥ ϵ

�
≤ Δ2

A=ðϵDÞ ð15Þ

for arbitrary t1 < t2. Note that, while (14) is a t-independent
upper bound for the measure of all W’s with σ2mcðtÞ ≥ ϵ,
this does not imply that the set of those W’s is t
independent. An analogous caveat applies to (15). Yet
another crucial point is that (14) and (15) are valid for
completely arbitrary (even time-dependent) Hamiltonians
H∶ H → H [19,35,36].
A first remarkable implication of (14) and (15) follows

by considering A as “given” (arbitrary but fixed): Namely,
“most” [37] ρð0Þ then yield practically the same expect-
ation value hAiρðtÞ as ρmc for any arbitrary but fixed time
point t but also for practically all times t within an arbitrary
but fixed time interval ½t1; t2� [see the paragraph below (7)].
Put differently, nonequilibrium expectation values are
“untypical” (even for t ¼ 0); they require very special
orientations W of the eigenbasis of ρð0Þ relative to that of
A. In particular, for pure states ρð0Þ ¼ jψihψ j we recover
the quintessence of so-called canonical typicality and
related phenomena [26,33,38–40] (see also [36,41]).
Conversely, when considering ρð0Þ as given, it follows

from (14) and (15) that most [37] measurement devices A
cannot distinguish ρðtÞ from ρmc at any arbitrary but fixed
time point t or for practically all times t within an arbitrary
but fixed time interval ½t1; t2�. This is the viewpoint
adopted, e.g., in Refs. [35,42] but now formulated within
our present generalization of von Neumann’s original
approach (see also [31]).
The fact that a nonequilibrium value of hAiρð0Þ requires

an untypical pair ρð0Þ, A implies [3] that conclusions
regarding thermalization can be drawn only from results
concerning all orientations of ρð0Þ relative to A, as it is the
case in von Neumann’s approach [see below (7) and (10)],
but not from results concerning most orientations, as in the
above generalization (14) and (15) of the approach from
Refs. [35,36,41,42]. In other words, it is not right to say that
von Neumann’s approach is inadequate to investigate
thermalization, since the same applies to the approach
from Refs. [35,36,41,42]. Rather, the two approaches are
fundamentally different: One requires a generic eigenbasis
constellation of H and A but admits any ρð0Þ, and the other
requires a generic eigenbasis constellation of ρð0Þ and A
but admits any H.
In conclusion, von Neumann’s demonstration of

thermalization for isolated many-body systems has been
generalized to arbitrary observables. The remaining

prerequisites for thermalization are thus rather weak,
namely, a Hamiltonian with generic eigenvalues En and
a generic orientation of its eigenvectors relative to those of
A, while the initial state ρð0Þ may still be chosen arbitrarily
(mixed or pure, far from equilibrium or not). The first
requirement (regarding En) is by now well established
[4–11], and further generalizations like in Refs. [12–15]
seem possible. With the second requirement, von Neumann
essentially anticipated the foundation of random matrix
theory [3], which is very difficult to justify rigorously but is
extremely successful in practice, and can be corroborated
by various intuitively convincing arguments [18]. For
instance, since our mind is used to thinking about the
physical world in terms of individual “particles,” we mostly
come up with single-particle observables A or sums thereof
[kinetic energy (temperature), density, pressure, magneti-
zation, etc.], whose eigenvectors are thus single-particle
product states. In contrast, a generic Hamiltonian H
includes particle-particle interactions, giving rise to a
“completely different” eigenbasis without any “special
relation” to that of A [6].
While von Neumann had in mind a preset H and a

varying (or typical) eigenbasis of A [2], the mathematically
equivalent but physically opposite viewpoint (fixed A,
varying H) was emphasized, e.g., in Refs. [3,4,16,17].
Here, both views have been merged and significantly
generalized by treating all three operators A, H, and
ρð0Þ on an equal footing: After selecting two of them
and assuming they exhibit a typical eigenbasis constella-
tion, we were able to draw conclusions which are then
entirely independent of the third one. Along these lines, we
established the general new results (11) and (12) concerning
the generic long-time behavior (equilibration) for expect-
ation values of arbitrary (even untypical) observables and the
entropy of the concomitant equilibrium states. Furthermore,
our findings (14) and (15) significantly generalize previously
known typicality results for arbitrary (even time-dependent)
Hamiltonians. As a by-product, we thus obtained a unifying
framework for several key aspects of thermalization, such as
the validation of the eigenstate thermalization hypothesis
[8,21,23,25] by means of the random matrix theory [22],
recent explorations of “equilibration” [9–15] and “canonical
typicality” [26,33,38–40], the long-lasting misjudgment of
von Neumann’s work [35,36,41,42], and its rehabilitation
in Ref. [3].

This work was supported by DFG Grant
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