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We experimentally investigate the first-order correlation function of a trapped Fermi gas in the
two-dimensional BEC-BCS crossover. We observe a transition to a low-temperature superfluid phase with
algebraically decaying correlations. We show that the spatial coherence of the entire trapped system can be
characterized by a single temperature-dependent exponent. We find the exponent at the transition to be
constant over a wide range of interaction strengths across the crossover. This suggests that the phase
transitions in both the bosonic regime and the strongly interacting crossover regime are of Berezinskii-
Kosterlitz-Thouless type and lie within the same universality class. On the bosonic side of the crossover,
our data are well described by the quantum Monte Carlo calculations for a Bose gas. In contrast, in the
strongly interacting regime, we observe a superfluid phase which is significantly influenced by the
fermionic nature of the constituent particles.
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Long-range coherence is the hallmark of superfluidity
and Bose-Einstein condensation (BEC) [1,2]. The character
of spatial coherence in a system and the properties of the
corresponding phase transitions are fundamentally influ-
enced by dimensionality. The two-dimensional case is
particularly intriguing as, for a homogeneous system, true
long-range order cannot persist at any finite temperature
due to the dominant role of phase fluctuations with large
wavelengths [3–5]. Although this prevents Bose-Einstein
condensation in 2D, a transition to a superfluid phase with
quasi-long-range order can still occur, as pointed out by
Berezinskii, Kosterlitz, and Thouless (BKT) [6–8]. A key
prediction of this theory is the scale-invariant behavior of
the first-order correlation function g1ðrÞ, which, in the low-
temperature phase, decays algebraically according to
g1ðrÞ ∝ r−η for large separations r. Importantly, the BKT
theory for homogeneous systems predicts a universal value
of ηc ¼ 1=4 at the critical temperature, accompanied by a
universal jump of the superfluid density [9].
Several key signatures of BKT physics have been

experimentally observed in a variety of systems such as
exciton-polariton condensates [10], layered magnets
[11,12], liquid 4He films [13], and trapped Bose gases
[14–20]. Particularly in the context of superfluidity, the
universal jump in the superfluid density was measured in
thin films of liquid 4He [13]. More recently, in the
pioneering interference experiment with a weakly interact-
ing Bose gas [14], the emergence of quasi-long-range order
and the proliferation of vortices were shown.
There are still important aspects of superfluidity in

two-dimensional systems that remain to be understood,

which we aim to elucidate in this work with ultracold
atoms. One question is whether the BKT phenomenology
can also be extended to systems with nonuniform density.
Indeed, if the microscopic symmetries are the same,
the general physical picture involving phase fluctuations
should be valid also for inhomogeneous systems. However,
it is not known if algebraic order persists at all in the
presence of inhomogeneity and, particularly, whether the
correlations in the whole system can still be characterized
by a single exponent. Another fundamental issue that arises
in the study of superfluidity is the pairing of fermions.
While fermionic superfluidity has been extensively inves-
tigated in 3D systems [21–23], there are open experimental
questions in the 2D context. In particular, what is the
long-range behavior of spatial coherence of a 2D fermionic
superfluid, and can it also be described in the BKT
framework like its bosonic counterpart?
In this work, we probe the first-order correlation function

g1ðrÞ of a trapped Fermi gas in the two-dimensional
BEC-BCS crossover regime [24,25]. The correlation func-
tion is determined from a measurement of the in situ
momentum distribution of the gas. We demonstrate that,
even in this inhomogeneous system, algebraic order per-
sists in g1ðrÞ below a critical temperature. Furthermore, a
quantitative analysis of the scaling exponents across the
crossover reveals the validity of the BKT theory also in the
fermionic regime.
Our measurements are performed with a gas of 105 6Li

atomsconfined in a highly anisotropic potential. The axial and
radial trapping frequencies are ωz ≈ 2π × 5.5 kHz and
ωr ≈ 2π × 18 Hz, respectively, leading to an aspect ratio of
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼ ffiffiffiffiffiffi

8π
p

amol=lz and the
condensation temperature of an ideal 2D Bose gas
T0
BEC ¼ ffiffiffiffiffiffiffi

6N
p ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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regions of the sample where the density is not uniform.
As pointed out in Refs. [36,37], such extended spatial
coherence in an interacting system is a sufficient condition
for superfluidity in two-dimensional systems.
As the temperature is lowered below a critical value, we

find that the correlation function in an intermediate range
3λT < r < 20λT is well described by a power-law decay,
whereas exponential behavior is clearly disfavored. We
quantify this by extracting the χ2 for both fit functions at
different temperatures and observe a clear transition from
exponential to algebraic decay [see Fig. 1(b)]. This quali-
tative change in g1ðrÞ provides an alternative way to
determine the phase transition temperature Tc from the
kink in χ2ðTÞ [31]. We find that the corresponding Tc
obtained in this manner agrees with the temperature
associated with the onset of pair condensation that was
measured in our previous work [24].
The power-law decay of g1ðrÞ means that the spatial

coherence of the entire sample is characterized by a single
exponent η. Figure 2 shows the experimentally determined
η for all the interaction strengths accessed in this work.
We find ηðTÞ to increase with temperature until it reaches
a maximal value at Tc, indicating a slower falloff of
correlations at lower temperatures. Although such temper-
ature dependence is qualitatively consistent with the BKT
theory, we observe the values of the exponents to be in the
range 0.6–1.4 for the temperatures accessed in the meas-
urement, which is substantially above the expectation of
η ≤ 0.25 for the homogeneous setup.
To confirm the large scaling exponents in the trapped

system, we compute the one-body density matrix on the
bosonic side by using the QMC technique described above.
This allows us to determine both the trap-averaged corre-
lation function g1ðrÞ as well as the central correlation
function G1ðr; 0Þ. The trap-averaged g1ðrÞ shows the
same behavior as in the experimental case, i.e., a transition

from exponential to algebraic decay at low temperatures.
The corresponding QMC transition temperatures also agree
with the measured values of Tc for ~g ¼ 0.60, 1.07, and
2.76. Furthermore, the maximal scaling exponent at Tc
extracted from the QMC g1ðrÞ for ~g ¼ 0.6 is approximately
1.35, which is close to the experimentally determined
ηðTcÞ≃ 1.4. The central correlation function G1ðr; 0Þ
shows a transition to algebraic order as well—with the
same Tc as in the experiment—but with a maximal
exponent of approximately 0.25, as expected for a homo-
geneous system. This finding is also in agreement with the
measurement of G1ðr; 0Þ in the interference experiments
[14] and is explained by the nearly uniform density in the
center of the trap.
Figure 2(a) shows the comparison between the exper-

imental and QMC values of ηðTÞ for ~g ¼ 0.60
[lnðkFa2DÞ≃ −7.3]. Although both show similar depend-
ence on temperature, we find a considerable quantitative
deviation between them. As discussed in Supplemental
Material [31], this discrepancy can mostly be attributed to
the effect of the finite imaging resolution in the measure-
ment of ~nðkÞ, which leads to an apparent broadening at low
momenta and thus overestimates the value of η. We show an
estimate of this temperature-dependent effect on the expo-
nents (open red triangles) in Fig. 2(a). There may be other
effects in the experiment that contribute additionally to
the deviation, such as higher-order corrections to the
determination of ~g from the fermionic scattering parameters
and density-dependent inelastic loss processes.
The experimental and simulated data raise the question

why correlations in the trapped system decay with a larger
scaling exponent than in the homogeneous case. To elucidate
the role of inhomogeneity, we consider the bosonic field
operator given by ϕ̂ðrÞ≃ ffiffiffiffiffiffiffiffiffi

ρðrÞp
exp½iφ̂ðrÞ�. In this repre-

sentation, it is clear that one contribution to the decay of
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FIG. 2 (color online). Power-law scaling exponents across the two-dimensional BEC-BCS crossover. The temperature-dependent
scaling exponent ηðTÞ in (a) the bosonic limit and (b) the crossover regime is shown. The relevant temperature scales in these cases are
given by T0

BEC and TF, respectively. The crossover parameter lnðkFa2DÞ is mildly temperature dependent. For reference, we display the
value at the critical temperature. For ~g ¼ 0.60 [lnðkFa2DÞ≃ −7.3], we show the prediction from QMC calculations for a Bose gas (filled
red triangles) and an estimate of the effect of the finite imaging resolution present in the measured data (open red triangles) [31]. We find
an exponent which increases with temperature in agreement with the BKT theory. The power-law decay eventually ceases at Tc, where a
maximal exponent ηc is reached. (c) The value of ηc is approximately constant for all lnðkFa2DÞ where we have previously observed
condensation of pairs [24]. This strongly suggests that the associated phase transitions are within one universality class.
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g1ðrÞ in Eq. (1) comes from the spatial variation of the
superfluid density ρðrÞ. Using a local density approximation
and assuming the superfluid density to have a Thomas-Fermi
profile, we estimate a contribution of approximately 0.3–0.4
[31] to the effective exponent. Still, this fails to explain the
large exponents observed in the experiment and the QMC
simulations close to Tc. This suggests that the increase in the
effective exponents is predominantly due to phase fluctua-
tions in the inhomogeneous system, whose spectrum is
modified by the discrete level structure of the harmonic
trapping potential and the Thomas-Fermi profile of the
superfluid. This inference is further supported by calcula-
tions of phase fluctuations in a trapped 2D Bose gas at low
temperatures [38], which indicate a trap-induced increase of
the effective exponent by up to a factor of 3.
Our measurements of g1ðrÞ and ηðTÞ across the two-

dimensional BEC-BCS crossover provide a unique
opportunity to study BKT physics even in the fermionic
regime. Figure 2 displays the measurement of the scaling
exponent across the crossover. Remarkably, we find that—
despite varying the scattering length by several orders of
magnitude—the maximal scaling exponent ηc at the tran-
sition shows no dependence on the interaction strength [see
Fig. 2(c)]. We note that the actual value of ηc ≃ 1.4 might
depend on parameters specific to the experiment, such as
the particle number and trapping frequencies. Nevertheless,
the fact that ηc remains constant across the BEC-BCS
crossover unambiguously shows that the long-range prop-
erties at the transition are independent of interparticle
interactions. This is evidence that all the observed tran-
sitions for different interaction strengths lie in the same
universality class. In particular, it shows that, even as we
cross over to the fermionic side [lnðkFa2DÞ > 0], the
observed transitions are of BKT type.
We now turn to a quantitative investigation of local

properties of the system. This allows us to benchmark our
measurements with (i) the QMC results for pointlike
bosons in the same quasi-2D trapping potential as realized
in the experiment and (ii) QMC calculations of the
homogenous 2D Bose gas [39,40]. For this, we investigate
the phase space density (PSD)

D ¼ nλ2T: ð2Þ
Herein, n is the 2D density of atoms in a single hyperfine
state and λ2T ¼ 2πℏ2=MkBT is the thermal wavelength of
bosons with M being twice the fermion mass. Note that n
coincides with the density of dimers in the bosonic limit.
We first consider coupling strengths ~g ¼ 0.60, 1.07, and

2.76 on the bosonic side of the crossover. Figure 3(a) shows
the comparison between the experimentally measured and
QMC-computed values of the PSD in the trap center for
~g ¼ 2.76. We find excellent agreement between the two
data sets. In particular, at Tc, the central PSD for all three ~g
are found to agree very well with Dc ¼ lnð380=~gÞ derived
for a homogeneous 2D Bose gas with weak interactions
(horizontal dashed line) [39,40]. This shows that the onset

of algebraic correlations in the trapped system coincides
with the local PSD in the center of the trap crossing the
critical value of the homogeneous system [28].
As we further increase lnðkFa2DÞ, the effective boson

coupling strength ~g becomes very large. For ~g ¼ 7.75
[lnðkFa2DÞ≃ 0.5], we find substantial deviations between
the experimental and QMC data for the PSD at low
temperatures [see Fig. 3(b)]. Moreover, our QMC calcu-
lations show that the associated 2D Bose gas is in its normal
phase for all temperatures accessed in the experiment. In
contrast, the measurements show a clear superfluid phase
transition at this interaction strength, as shown in Fig. 1
(lower panel). This provides evidence for the crossover to a
superfluid phase whose properties are not captured by a
description that assumes pointlike dimers.
Both experimental and simulated data in the bosonic

limit are obtained in a highly anisotropic 3D trapping
potential. Still, local observables such as the central PSD
and the central correlation function G1ðr; 0Þ agree excel-
lently in their critical properties with the theory of a
homogenous 2D Bose gas and the corresponding BKT
phenomena. In the case of global correlations, we showed
that the inhomogeneity leads to significant deviations from
the homogeneous case, most importantly an increase in the
exponent of the power-law decay. However, the general
features in the off-diagonal correlations—such as the
temperature dependence of ηðTÞ and the independence
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of ηc from lnðkFa2DÞ—suggest that the long-range physics
are still captured by the ideas underlying BKT theory for
the two-dimensional XY model.
In conclusion, we investigated the nature of the phase

transition of a trapped 2D ultracold Fermi gas. We
measured for the first time the first-order correlation
function of the entire system and extracted its long-range
behavior. We showed that it is consistent with a description
by a single power-law exponent for large distances. The
transition temperature for the onset of algebraic order
coincides with the one obtained from the onset of pair
condensation in Ref. [24]. By comparing the experimental
data to QMC calculations on the bosonic side, we found
the system to realize a strongly interacting 2D Bose gas.
The measured phase space densities and correlations on the
fermionic side, instead, are not captured by a description in
terms of pointlike bosons, which indicates the crossover to
a fermionic superfluid.
Our measurements show that the spatial coherence even

in trapped systems can be characterized by a single scaling
exponent. However, understanding the underlying mecha-
nism remains a challenge for future explorations and may
lead to a deeper understanding of phase transitions in
inhomogeneous systems.
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