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In disordered Weyl semimetals, mechanisms of topological origin lead to the protection against
Anderson localization, and at the same time to different types of transverse electromagnetic response—the
anomalous Hall and the chiral magnetic effect. We here apply field theory methods to discuss the
manifestation of these phenomena at length scales that are beyond the scope of diagrammatic perturbation
theory. Specifically, we show how an interplay of symmetry breaking and the chiral anomaly leads to a field
theory containing two types of topological terms. Generating the unconventional response coefficients
of the system, these terms remain largely unaffected by disorder, i.e., information on the chirality of the
system remains visible even at large length scales.
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Weyl semimetals are paradigmatic examples of gapless
topological condensed matter systems. A Weyl semimetal
comprises an even number of linearly dispersive band
touching points embedded in a three-dimensional Brillouin
zone. The presence of these hot spots implies a response to
perturbations that is intermediate between that of metals
and insulators (see Ref. [1] for a review). This “semi-
metallicness” also signifies the physics of the disordered
system [2–5]. On the one hand, the vanishing of the nodal
density of states weakens disorder scattering cross sections;
on the other hand, sufficiently strong disorder will generate
a finite band center density of states to eventually over-
power the above effect. It has been shown [4] that the above
competition manifests itself in the presence of a critical
disorder strength. Above it the system flows towards a
clean fixed, while the regime of strong impurity scattering
is realized in the opposite case. It is the purpose of the
present Letter to derive and discuss the effective theory
describing the latter phase at length scales exceeding the
system’s scattering mean free path.
At large length scales, impurity scattering will render

the motion of individual excitations diffusive, driving the
system in the universality class of the 3d Anderson metal
(i.e., above the phase transition point separating a 3d metal
from an insulator). This expectation is, in fact, a certainty
given that a single Weyl node may be interpreted as an
effective surface theory of a bulk 4d topological insulator;
finite conduction is protected by topology. At the same
time, topology implies a number of differences distinguish-
ing the Weyl system from a generic metal. First, an
individual Weyl node breaks parity symmetry, and it is
known [6] that the breaking of discrete symmetries is
generally remembered, even in the presence of strong
disorder. Indeed, we will find that the low energy theory
of an individual node system contains a parity breaking
non-Abelian Chern-Simons (CS) term, which describes the
survival of the so-called chiral magnetic effect (CME) [7,8]

in the disordered environment. Second, it has been shown
that a system comprising two Weyl nodes separated in
momentum space shows an anomalous Hall effect (AHE)
[9]. Within the field theoretic framework below, this effect
will derive from a 3D extension of a two-dimensional
topological θ term, familiar from the theory of the quantum
Hall effect.
Field theory.—Our starting point is the binodal

Hamiltonian (cf. Fig. 1)

Ĥ ¼ vk̂σn3 þ ðvbþ μÞ þ VðxÞ; ð1Þ
where k̂≡ k · σ, σ, is a vector of Pauli matrices, k̂ the
vector momentum operator, and v a characteristic velocity.
The Pauli matrix σn3 acts in a two-component space
discriminating between two nodes split by a vector 2b≡
2be3 in momentum space and an increment 2μ in energy.
The model is coupled to disorder by a Gaussian distributed
potential VðxÞ with variance γ0. We discriminate between
disorder correlated over length scales ≳b−1, which is soft
in the sense that the two Weyl nodes are not coupled by
impurity scattering, and the opposite case of short range
correlated disorder mixing the nodes. A high momentum
cutoff jkj < Λ limits the range of linearizability of an
underlying lattice model.

FIG. 1 (color online). Schematic of two Weyl nodes split in
energy and momentum by 2μ and 2b, respectively.
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To access the transport properties of the system at
energies ϵ, we introduce a replicated generating functional
Z defined by the action

S½ψ̄ ;ψ � ¼ −i
Z

d3xψ̄ðϵþ iδτ3 − ĤÞψ : ð2Þ

Here ψ ¼ fψ r
s;i;nðxÞg is an 8R-component vector of

Grassmann variables where n ¼ 1; 2 labels the two nodes,
i ¼ 1; 2 labels the components of a Weyl spinor, s ¼ �
distinguishes between advanced and retarded (AR) Green
functions, i.e., ðτ3Þss0 ¼ sδss0 , and r ¼ 1;…; R is a replica
index. Transport observables may be computed by intro-
ducing suitably defined source variables, followed by an
analytic continuation R → 0. However, to keep the notation
simple, we focus on the source-free functional for the
moment.
To explore the influence of disorder on the system, we

integrate over V to generate the quartic contribution
ðγ=2Þ R dxðψ̄ψÞ2. The fate of this nonlinearity under
changes of the cutoff Λ has been studied [5,10] by
evaluating the results of renormalized perturbation theory
in 2þ ϵ dimensions [11] at ϵ ¼ 1. It has been found that for
bare amplitudes larger than a critical value γ� ¼ π2v2=Λ the
effective disorder strength increases under renormalization.
In this Letter, the focus will be on the perturbatively
inaccessible regime beyond the scattering mean free path,
Λ−1 ≡ l ∼ γ=v2. We start by decoupling [12] the nonlinear
scattering vertex by a matrix field B ¼ fBrr0

ss0;ii0;ng, whose
role is to describe the phase coherent propagation of
pair amplitudes ψ r

sinψ̄
r0
s0i0n in the system, see Fig. 2. The

difference between the cases of hard and soft disorder,
respectively, is that in the former [latter] case the two
nodes couple to the same (B ¼ B ⊗ In) [independent
(B ¼ bdiagðB1; B2Þn] matrix fields. We first consider the
soft case, in which the two nodes can be discussed
separately; the effect of impurity mixing can be described
by a locking B1 ¼ B2 at any later stage. Writing B ¼ B1 for
notational simplicity, we integrate over the Grassmann
variables to obtain the effective action

S½B� ¼ −
1

2γ

Z
d3xtrB2 − tr lnðĜ½B�Þ; ð3Þ

where Ĝ½B� ¼ ðϵþ iδτ3 − Ĥ0 − BÞ−1, and Ĥ0 is the clean
Hamiltonian.
A variation of the action with respect to B yields the

mean field equation B̄¼! γtrĜðx; x; ½B̄�Þ, which is solved
[11] by the diagonal ansatz B̄ ¼ −iκτ3. Physically, the
solution B̄ plays the role of an impurity self-energy,
evaluated within the self-consistent Born approximation,
cf. Fig. 2 (top right). Specifically, at ϵ ¼ 0 (semimetal) one
finds κ ¼ ð2=πÞvΛð1 − γ�=γÞ [13], while far away from the

Weyl node (metal) κ ¼ γπν, where ν ¼ ϵ2=2π2v3 is the
clean density of states.
To understand the meaning of the mean field symmetry

breaking for the physics at large scales, notice that before
disorder averaging the action possessed “replica rotation
symmetry” under global unitary transformations ψ → Uψ ,
where U ∈ G≡ Uð2RÞ acts in replica and advanced
retarded space. Disorder averaging leads to spontaneous
symmetry breaking δ → κ, much like in a ferromagnet
where rotational symmetry gets broken by mean field
magnetization. This analogy suggests organizing the “soft
fluctuations” in the system as B≡ iκQ≡ iκTτ3T−1, where
fluctuations T ∈ G=H, H ≡ UðRÞ × UðRÞ, noncommuta-
tive with τ3 will turn out to be diffusively propagating
Goldstone modes, conceptually analogous to magnons. We
also observe that our system possesses two distinct types of
symmetries: a global symmetry Q → T0QT−1

0 under uni-
form transformations T0 ∈ G (corresponding to a uniform
change of a magnetization axis) and a trivial local gauge
symmetry T → TkðxÞ; kðxÞ ∈ H that does not affect the
“order parameter field” Q.
Our goal is to derive an action for the generators

T−1∂iT ≡ Ai of soft Goldstone mode fluctuations TðxÞ
that will describe the propagation of diffusion modes and
their “interaction” due to quantum interference [cf. Fig. 2
(center panel)]. We expect this action to contain a backbone
describing the universality class of the diffusive 3d-
Anderson metal, plus contributions of topological origin

FIG. 2 (color online). Building blocks of the field theory.
Upper panel: decoupling the impurity scattering by a Hubbard-
Stratonovich field which describes the particle-hole interference;
the mean field value of the field is determined by the self-
consistent Born approximation impurity self-energy (right).
Center panel: soft modes (generated by the fields A of the text)
describe diffusive propagation (left) and nonlinear “interaction”
due to higher order scattering vertices (right). Bottom panel: two
“triangle diagrams” generating an A3 (left) and A∂A (right)
vertex, with the wavy line representing a derivative vertex.
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accounting for the anomalous response properties of
the Weyl system. As we show below this action emerges
from an interplay of Goldstone mode fluctuations with
the chiral anomalies of the Dirac Weyl nodes. Readers
primarily interested in results may skip this discussion
and proceed directly to the discussion of the main result,
Eqs. (5) and (7).
Effective field theory.—Since trðQ2Þ ¼ const, the action

we need to consider reads S0½Q�≡ tr lnðϵ − vkþ iκQÞ.
One might be tempted to start the expansion program with a
similarity transformation

S0½Q� ¼? tr lnðT−1ðϵ − vkþ iκQÞTÞ
¼ tr lnðϵ − vkþ ivAþ iκτ3Þ≡ S½A�; ð4Þ

then to be followed by an expansion in the “non-Abelian
gauge field” A. However, due to the notorious chiral
anomaly of relativistic fermion systems, this operation is
invalid; the action needs to be regularized first. Following
a strategy previously applied to the 2D d-wave super-
conductor, we regularize by subtraction of a term
S½Q�≡ S0½Q� − Sη½Q�, where Sη differs from S0 by a rep-
lacement κ → η↘ 0, and setting ϵ ¼ 0. In the limit η → 0
the Q dependence of Sη½Q� drops out so that Sη→0½Q� ¼ 0.
On the other hand, for large momenta vjkj ≫ q and fixed η,
the two action contributions cancel against each other,
i.e., S½Q� is UV regularized. The similarity transformation
may now safely be applied to both S0;η to obtain an
effective action S½Q� ¼ ðS0½A� − Sη½A�Þreg, where the sub-
script “reg” means that only UV finite contributions to the
subsequent expansion in A are to be kept. Notice that in
the language of the A fields, the formerly trivial invari-
ance under local transformations k is no longer manifest.
Rather, the A’s transform as non-Abelian gauge fields,
Ai → k−1ðAþ k∂ik−1Þk, and ensuring gauge invariance of
the theory becomes a nontrivial consistency check.
In the expansion of the action, we keep terms of order

two [Oð∂A; A2Þ] and three [OðA3; ∂AÞ] derivatives. To
second order we obtain the result

Sd½A� ¼
σ1xx
8

X
i

Z
d3xtrð½Ai; τ3�2Þ;

Stop½A� ¼ −
σ1xy
2

ϵ3ij
Z

d3xtrðτ3∂iAjÞ; ð5Þ

where the longitudinal and Hall conductivity of node 1, σ1xx
and σ1xy, are determined by the microscopic model param-
eters as discussed below. We note that the action (5) affords
the manifestly gauge-invariant reformulation

Sd½Q� ¼ σxx
8

Z
d3xtrð∂Q2Þ;

Stop½Q� ¼ −
σxy
8

ϵ3ij
Z

dxtrðQ∂iQ∂jQÞ: ð6Þ

The first contribution Sd has been constructed in Ref. [11]
on phenomenological grounds within a nonregularized
framework [14]. Note that the representation of Stop as a
full derivative in the second line of Eq. (5) shows that this
term becomes a boundary action describing circulating
boundary currents if σxy ≠ 0. However, before discussing
the physics of these expressions further, we complete
the derivation of the action and consider terms of cubic
order in A.
The terms ofOðA3Þ are the “triangle graphs” pervasive in

the theory of ð2þ 1Þ- or ð3þ 0Þ-dimensional relativistic
gauge theories. On general grounds [15] we expect the
appearance of a Chern-Simons action at this order.
A straightforward if lengthy calculation indeed yields the
result

SCS½A� ¼ SICS½A� þ SIICS½A�;

SICS½A� ¼ −
iϵijk

8π

X
s¼�

s
Z

d3xtrðAiPs∂jAkPsÞ;

SIICS½A� ¼ −
iϵijk

12π

X
s¼�

s
Z

d3xtrðAiPsAjPsAkPsÞ; ð7Þ

where P� is a projector on advanced or retarded indices,
and the two contributions originate in the diagrams shown
in the bottom panel of Fig. 2. Apart from the presence of
the projector matrices, this has the characteristic structure
of a non-Abelian CS term. (However, inasmuch as A does
not describe a genuine external gauge field, Eq. (7) does
not define a “real” CS action. The situation rather bears
similarity to that considered in Refs. [16,17] in somewhat
different physical contexts.)
Note that the CS action does not afford a representa-

tion in terms of Q fields, which reflects the lack of
complete gauge invariance of this action piece [15];
however, one verifies that under a gauge transformation
by k≡ bdiagðkþ; k−ÞAR ∈ H, the CS action transforms as
SCS½A� → SCS½A� þ Stop½k�, where

Stop½k� ¼
i

24π

X
s¼�

s
Z

d3xtrðk−1s ∂ksÞ∧3: ð8Þ

The integral yields a quantized value, viz., 24π2 × ns,
where ns is the is winding number of a configuration
kffs ∈ SUð2Þ in three-dimensional space. For “large” gauge
transformations with nonvanishing winding numbers, the
CS action changes by a factor iπðnþ þ n−Þ. The origin of
this phenomenon was explained in Ref. [15], where it was
shown that the regulator action Sη → Sη þ iπðnþ þ n−Þ too
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changes under a large gauge transformation due to zero
crossings of the regularizing Dirac operator. However, the
sum of the two contributions SCS þ Sη remains invariant.
Discussion.—The action Sd þ Stop of the diffusion

modes A appeared for the first time in connection with
the multilayer quantum Hall effect [18], a system concep-
tually similar to the present one if the 3-direction of Weyl
node splitting is interpreted as the stacking direction of a
layered system of 2D quantum anomalous Hall insulators
[9]. The action Sd controls the fluctuations of diffusion
modes in terms of the dimensionless coupling constant
gxx ≡ σ1xxΛ−1. Within the framework of our gradient
expansion we find σxx ¼ ðϵ2 þ 3κ2Þ=6πκv, which simpli-
fies to σ1xx ¼ κ=2πv at the Weyl node and asymptotes to the
Drude conductivity σ1xx ¼ v2=3γ at higher energies ϵ ≫ κ.
At the nodes, ϵ ¼ 0, and at bare length scales Λ ∼ l−1

characteristic of the ballistic-diffusive crossover, the con-
ductance gxx takes values of Oð1Þ, close to but larger [19]
than the critical value g� marking the 3d Anderson
transition. The bare coefficient σ1xy in the action Stop is
the contribution of node 1 to the Hall conductivity of the
system at crossover length scales to the diffusive regime.
Following the theory of the quantum Hall effect [20] we
obtain σxy as a thermodynamic coefficient σxy ¼ ∂Bn that
probes the electron concentration at fixed chemical poten-
tial μ ¼ ϵ. Our final result σ1=2xy ¼ b=2π holds for both
nodes and depends neither on the energy ϵ nor on the
disorder strength κ. Both for soft and hard disorder, the two
contributions to the Hall conductivity add, and we obtain
σxy ¼ b=π in agreement with Ref. [9], a result known as
the AHE.
The CS contribution to the action accounts for the

thermodynamic response of the system to imbalances
(b; μ) between the nodes. For that we couple the system
to an external field a ¼ faig, where ai ¼ ðB=2Þϵ3ijxj,
i ¼ 1; 2, represents an external magnetic field Be3, as well
as to the source field a3 ¼ aðxÞτ3. The latter is defined in
such a way that differentiation of the partition function

i
4π

lim
R→0

1

R
δaðxÞZ½a� ¼ −

1

π
Imhtr½Gþðx;xÞj3ðxÞ�i≡ j3;ϵ

with the current operator j3ðxÞ ¼ σ3 yields the contribution
of states at energy ϵ to the equilibrium value of the three-
current density of node 1. We compute this expression by
adding the external field to the internal one, A → Aþ ia,
and substituting this configuration into the CS action. In the
simplest approximation A ¼ 0 (for the above “equilibrium”
choice of source terms fluctuation corrections around A¼0
vanish in the replica limit regardless); we then obtain
SCS½a� ¼ −ðiB=xÞ R dxaðxÞ, and hence j3;ϵ ¼ ð1=4π2ÞB.
To obtain the full response of the system, we need to add
the (opposite) contribution of the second node and integrate
over filled energy states up to some Fermi energy ϵF.

Taking into account that the existence of a bare lineariza-
tion cutoff Λ implies a cutoff jϵj < jϵ0 � μj, ϵ0 ≡ vΛ, for
the accessible energy states (cf. Fig. 1); this leads to

j3 ¼
Z

ϵF

−ϵ0þμ
dϵj3;ϵ −

Z
ϵF

−ϵ0−μ
dϵj3;ϵ ¼

μB
2π2

; ð9Þ

i.e., an equilibrium current proportional to an external
magnetic field, the so-called CME [7,8] (for a discussion of
how this result may be understood from the perspective of
the Fermi-liquid theory, see Ref. [21]).
Renormalization.—What happens if short distance fluc-

tuations in the field theory are integrated out to probe
the physics at length scales beyond the ballistic-diffusive
crossover regime? An answer to this question has been
formulated in Ref. [18] within the framework of two loop
renormalized perturbation theory for the dimensionless
coupling constants gμν ¼ σμνΛ−1 of the model. The result

dgxx
d lnL

¼ gxx −
1

3π4gxx
;

dgxy
d lnL

¼ gxy; ð10Þ

states that the longitudinal conductance scales with the
system size L according to the predictions of one-parameter
scaling theory (unaffected by the Hall conductance)

towards Ohmic behavior gxx ∼gxx≫1
L. The Hall conductance

shows linear scaling, gxy ∝ L, which means that the AHE
remains unrenormalized by disorder; σxy ¼ const even at
large length scales (in contrast to the Hall conductivity
renormalized by instanton fluctuations [20] in a two-
dimensional system). Finally, the coupling constant of
the CS action is fixed by gauge invariance, and fluctuation
corrections to hj3iB vanish in the replica limit. This means
that within the framework of our theory the CME is fully
protected against renormalization by disorder.
The disorder insensitivity of the topological response

coefficients holds regardless of whether one probes the
semimetallic Weyl nodes ϵ; μ ∼ κ, or the metallic physics
at jϵ� μj ≫ κ. The essential difference between the two
situations lies in the bare and renormalized values of the
longitudinal conductance gxx: in the former (latter) case, gxx
is initially small (large) to begin with. However, in either
case, gxx increases, and asymptotes to Ohmic behavior
at large length scales. While the system then behaves
similarly to a three-dimensional metal, the preserved non-
vanishing of its two transverse transport coefficients
betrays the underlying presence of two Dirac nodes.
Summarizing, we have microscopically derived a field

theory description of disordered Weyl semimetals and
metals at length scales exceeding the mean free path.
The structure of the theory is essentially determined
by an interplay of symmetry conditions and the chiral
anomaly. This mechanism stabilizes metallic behavior at
large length scales, along with various disorder-insensitive
response coefficients of topological origin.
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Note added.—Recently, we became aware of the preprint
[22] where an action similar to ours is motivated from a
different perspective, viz., by dimensional reduction from a
bulk 4d-topological insulator.
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