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We determine the dynamical critical exponent z appearing at the Bose glass to superfluid transition in
two dimensions by performing large scale numerical studies of two microscopically different quantum
models within the universality class: The hard-core boson model and the quantum rotor (soft core) model,
both subject to strong on-site disorder. By performing many simulations at different system size L and
inverse temperature β close to the quantum critical point, the position of the critical point and the critical
exponents, z, ν, and η can be determined independently of any implicit assumptions of the numerical value
of z, in contrast to most prior studies. This is done by a careful scaling analysis close to the critical point
with a particular focus on the temperature dependence of the scaling functions. For the hard-core boson
model we find z ¼ 1.88ð8Þ, ν ¼ 0.99ð3Þ, and η ¼ −0.16ð8Þ with a critical field of hc ¼ 4.79ð3Þ, while
for the quantum rotor model we find z ¼ 1.99ð5Þ, ν ¼ 1.00ð2Þ, and η ¼ −0.3ð1Þ with a critical hopping
parameter of tc ¼ 0.0760ð5Þ. In both cases do we find a correlation length exponent consistent with ν ¼ 1,
saturating the bound ν ≥ 2=d as well as a value of z significantly larger than previous studies, and for the
quantum rotor model consistent with z ¼ d.
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Most familiar quantum critical points (QCPs) are char-
acterized by Lorentz invariance implying a symmetry
between correlations in space and time and consequently
between the respective correlation lengths ξ ∼ ξτ [1].
In turn, the dynamical critical exponent, defined through
ξτ ∼ ξz, is simply z ¼ 1, such as in the crossing of the
special multicritical point of the Bose-Hubbard model [1].
Anisotropic systems where z ≠ 1, implying different scal-
ing of ξ and ξτ, are comparatively less common [1,2].
This quantum critical scaling is particularly intriguing if
disorder is present, in which case nonintegral values of z
have been proposed [3,4]. One model for which it is
generally believed that z ≠ 1 is the Bose glass to superfluid
(BG-SF) transition describing interacting bosons subject
to disorder, the so-called dirty-boson problem, modeled by
the Hamiltonian

Hbh ¼−t
X

r;e

ðb†rbrþeþH:c:Þ−
X

r

μr ~nrþ
U
2

X

r

~nrð ~nr− 1Þ:

ð1Þ

Here e ¼ x; y, and b†r ; br are the boson creation and ann-
ihilation operators at site r with ~nr the corresponding
number operator. The parameters of the model are the hop-
ping constant t, Hubbard repulsion U, and site-dependent
chemical potential μr, inducing the disorder.
Experimental setups emulating dirty boson physics

include optical lattices [5] adsorbed helium in random
media [6], Josephson-junction arrays [7], thin-film super-
conductors [8], and quantum magnets such as doped
dichloro-tetrakis-thiourea-nickel(II) (DTN) [9]. For recent
reviews, see Refs. [10,11].

The dynamical critical exponent z appearing at the BG-
SF transition has proven exceedingly hard to determine.
Assuming the validity of the (quantum) Harris criterion for
disordered systems ν ≥ 2=d [12], initial theoretical work
[13] argued that z ¼ d in any dimension. This has in-
triguing implications since it implies the absence of an
upper critical dimension. Although many initial numerical
studies [14–19] were consistent with z ¼ d ¼ 2, most were
biased by implicit assumptions about z, using it to fix the
simulation aspect ratio Lz=β. The exponent z was therefore
not truly independently determined. However, recent theo-
retical work by Weichman and collaborators [11,20] has
challenged the arguments leading to z ¼ d leaving the
value of z an open question. A subsequent numerical study
[3] of the hard-core version of Eq. (1) found z ¼ 1.40ð2Þ,
ν ¼ 1.10ð4Þ while a recent unbiased state-of-the-art study
[4] using an effective classical model of Eq. (1) determined
a significantly larger value of z ¼ 1.75ð5Þ and ν ¼ 1.15ð3Þ.
Both results violate z ¼ d. Intriguingly, in three dimensions
both numerical [9,19,21] and experimental [22], studies
yield evidence for z ¼ d ¼ 3, although these numerical
estimates cannot be seen as fully unbiased.
At present, the value of z at the dirty-boson QCP along

with many of the other exponents most notably ν can
therefore best be regarded as ill determined, at least for the
fully quantum mechanical model. It is not known to what
extent, if any, the relation z ¼ d is violated or if the relation
ν ≥ 2=d [12] is satisfied. Here we try to answer some of
these questions by performing large-scale simulations on
two fully quantum mechanical models in two dimensions
within the dirty-boson universality class: A hard-core
boson model (HCB) modeled as a transverse field XY
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model and a soft-core quantum rotor model (QR), both
subject to strong on-site disorder. In all cases do we find it
necessary to use 104–105 disorder realizations over a large
range of temperatures extending down to β ¼ 1024 for
system sizes L ¼ 12–32. In contrast to Ref. [3] these
dramatically improved statistics allow for a significantly
better determination of the critical point of the HCB model.
We also note that the use of fully quantum models presents
significant advantages over the effective classical model
used in Ref. [4]. Finally, through a fully unbiased analysis,
without implicit assumptions on z, we find for the first time
strong evidence that z ¼ d ¼ 2 and that ν ≥ 2=d is satisfied
as an equality.
We now briefly summarize some of the theoretical

discussion. The arguments leading to the equality z ¼ d start
with hyperscaling [23] which states that the singular part of
the free energy inside a correlation volume is a universal
dimensionless number, ðfs=ℏÞξdξτ ¼ A. With ξ ∼ δ−ν it
follows that fs ∼ δνðdþzÞ with a finite-size form [1]:

fsðδ; L; βÞ ∼ δνðdþzÞFðξ=L; ξτ=βÞ: ð2Þ
Imposing a phase gradient ∂ϕ along one of the spatial
directions will then give rise to a free energy difference
Δfs=ℏ ¼ 1

2
ρð∂ϕÞ2 where ρ is the stiffness (superfluid

density). Since Δfs must obey a form similar to Eq. (2)
and since ∂ϕ has dimension of inverse length implying
∂ϕ ∼ 1=ξ, it follows that ρ ∼ ξ2δνðdþzÞ ∼ δνðd−2þzÞ, with a
finite-size scaling form of

ρ ¼ L2−d−zRðδL1=ν; β=LzÞ: ð3Þ
If an analogous argument is usedwith a twist in the temporal
direction scaling as ∂τϕ ∼ 1=ξτ, Fisher et al. [1] argued
that the compressibility scales as κ ∼ δνðd−zÞ which they
then used to argue that z ¼ d. In contrast, Weichman and
collaborators [11,20] argue that in the presence of disorder
∂τϕ ∼ 1=ξτ should not apply, invalidating the relation
κ ∼ δνðd−zÞ, leaving z unconstrained. Interestingly, a differ-
ent theoretical argument [9] favoring z ¼ d has also been
put forward.
Models.—The first model we study, closely related to

Eq. (1), is the QR model. It is defined in terms of conjugate
phase and number operators θr, nr satisfying ½θr; nr0 � ¼ δr;r0
on a L × L lattice:

Hqr ¼ −
X

r;rþe

t cosðθr − θrþeÞ −
X

r

μrnr þ
U
2

X

r

n2r ; ð4Þ

where U is the on-site repulsion, t is the nearest neighbor
tunneling amplitude, and μr ∈ ½−Δ;Δ� represents the uni-
formly distributed on-site disorder in the chemical poten-
tial. As before, e ¼ x; y. We fix Δ ¼ 1

2
, U ¼ 1, and cross

the BG-SF transition by varying t. In contrast to Eq. (1) nr
can take negative as well as positive values and can be
interpreted as deviations from the average filling n0.

For convenience we study Eq. (4) using a link-current
representation [24] for which directed worm algorithms
are available [25]. We use lattices ranging from L ¼ 12
to L ¼ 32, with 5 × 104 disorder realizations for
L ¼ 12;…; 28 and 104 disorder realizations for L ¼ 32.
In all cases we average over 6 × 104 Monte-Carlo steps
(MCS) per disorder realization. For the simulations of the
QR model a temporal discretization of Δτ ¼ 0.1 was used,
sufficiently small that remaining discretization errors could
be neglected.
The second model we consider is the U → ∞ HCB limit

of Eq. (1) equivalent to the S ¼ 1=2 XY model on an L × L
lattice in a random transverse field:

Hxy ¼ −
1

2

X

r;e

ðSþr S−rþe þ S−r S
þ
rþeÞ þ

X

r

hrSzr; ð5Þ

with hr ∈ ½−h; h� uniformly. In this case we traverse the
transition by tuning the disorder strength h. We use a
directed loop version of the stochastic series expansion
(SSE) [26] to simulate this model. This technique is free
of discretization errors and efficient directed algorithms
[26,27] are available. We further use a beta-doubling
scheme [28] that allows for rapid equilibration at large β
values. In contrast to the QR model, we employ a micro-
canonical ensemble for the disorder by constraining
each disorder realization to have exactly

P
rhr ¼ 0. This

facilitates the analysis without affecting the results [29].
We use at least ∼105 disorder realizations per data point, a
large improvement over [3]. In the following ½…� denotes
the disorder average and h…i the thermal average.
Observables.—Our main focus is the scaling behavior of

the superfluid stiffness ρ for which the finite-size scaling
form Eq. (3) was derived. For both models we measure ρ as

ρ ¼ ½hW2
x þW2

yi�
2β

; ð6Þ

where Wx and Wy are the winding numbers in the spatial
directions. [For the HCB model Eq. (6) is multiplied by π
to yield ρ.] From Eq (6), it follows that βρ ¼ W2 has a
particularly attractive scaling form when d ¼ 2, which we
may write

W2 ¼ β

Lz WðδL1=ν; L=β1=zÞ; ð7Þ

where we define δ ¼ ðt − tcÞ (QR model) and δ ¼ ðh − hcÞ
(HCB model). We also make extensive use of the
correlation functions, defined as Cðr − r0; τ − τ0Þ ¼
½hexpfiðθrðτÞ − θr0 ðτ0ÞÞgi� for the QR model and as
Cðr − r0; τ − τ0Þ ¼ ½hSþr ðτÞ S−r0 ðτ0Þi� for the HCB model.
Results, QR.—A large number of independent simula-

tions of Eq. (4) were carried out at many different L; β close
to the QCP. Since we expect ρ to approach zero in an
exponential manner as L is increased at fixed β and since ρ
is likely exponentially suppressed in the insulating phase it
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seems reasonable to approximate the function Wðx; yÞ in
Eq. (7) as a exp½fðx; yÞ� with x ¼ δL1=ν, y ¼ L=β1=z. If the
temperature dependence is carefully mapped out [30]
one indeed sees thatWðx; yÞ has a clear exponential depend-
ence. As a first step, we then assume fðx; yÞ ¼
bx − cy − dy2. We can then fit all 142 data points to
this form determining the coefficients a; b; c; d along with
tc ¼ 0.0760ð5Þ ν ¼ 1.00ð2Þ and z ¼ 1.99ð5Þ. The results are
shown in Fig. 1 with a scaling plot using the scaling variable
X ¼ lnðaβ=LzÞ þ bðt − tcÞL1=ν − cL=β1=z − dðL=β1=zÞ2.
A more refined analysis [30] shows that the temperature
dependence likely involves a correction term W2 ¼
ayz expðbx−cyÞþdy−w expðbx−c0yÞ. The correction term
is here proportional toTw and disappears asT tends to zero. It
is straightforward to fit all our data to this form which yields
identical estimates for tc, ν, z along with w ¼ 0.6ð2Þ.
Estimating the AIC (Akaike information criterion) for the
two forms heavily favors the latter. We note that our results
appear to satisfy z ¼ d andν ≥ 2=d as equalities in contrast to
[4] which finds z ¼ 1.75ð5Þ, ν ¼ 1.15ð3Þ.
With a reliable estimate of z we can now fix the scaling

argument Lz=β. If we then study the Binder cumulant
BW2 ¼ ½hW4i�=½hW2i�2 we see that at fixed Lz=β it should
follow a simplified form of Eq. (7), BW2 ¼ BðδL1=νÞ. As
shown in Fig. 2, lines for different L will then cross at tc,
thereby confirming our previous estimates.
Our results for the correlation functions for the QR

models are shown in Fig. 3 for a L ¼ 20 lattice at tc for a
range of temperatures. Asymptotically, one expects [1]
CðτÞ ∼ τ−ðd−2þzþηÞ=z and CðrÞ ∼ r−ðd−2þzþηÞ. Clearly, CðrÞ
drops off much faster than CðτÞ confirming that z ≠ 1.
However, pronounced finite temperature effects are visible
in CðrÞ arising because the limit β ≫ Lz has not yet been
reached which prevents us from reliably determining the

power law for CðrÞ. However, from CðτÞ we determine
ðzþ ηÞ=z ¼ yτ ¼ 0.85ð2Þ and hence η ¼ −0.3ð1Þ using
our previous estimate z ¼ 1.99ð5Þ. This estimate satisfies
the rigorous inequality 2 − ðdþ zÞ < η ≤ 2 − d [1] and
agrees with the prior result η ¼ −0.3ð1Þ [4].
For the QR model we have also verified that the comp-

ressibility κ remains finite and independent of L throughout
the transition, consistent with z ≤ d. Furthermore, a direct
evaluation of ∂W2=∂t directly at tc for fixed Lz=β, expected
from Eq. (7) to scale as ∼L1=ν, yields ν ¼ 0.98ð4Þ con-
sistent with our previous results.

(a) (b)

FIG. 2 (color online). The Binder cumulant BW2 for the QR
model versus t with β ¼ L2=4. (a) Unscaled data showing a
crossing close to the critical point tc ¼ 0.0760ð5Þ. (b) Scaling
plot versus ðt − tcÞL1=ν obtained by fitting the data in (a) to the
form aþ bðt − tcÞL1=ν þ cðt − tcÞ2L2=ν yielding tc ¼ 0.758ð5Þ
and ν ¼ 0.98ð3Þ.

(a) (b)

FIG. 1 (color online). Scaling collapse of 142 independent
simulations of W2 ¼ βρ for the QR model. (a) Unscaled data
of W2 versus t. (b) Scaling collapse of the data of panel (a).
The data are plotted against the scaling variable X ¼
lnðaβ=LzÞ þ bðt − tcÞL1=ν − cL=β1=z − dðL=β1=zÞ2.

FIG. 3 (color online). The correlation functions CðτÞ and CðrÞ
as a function of τ, r for a system sizeL ¼ 20. Results are shown for
the QR model at the critical point and a range of β ¼ 55;…; 800.
The solid red line is a fit to β ¼ 800 results forCðτÞ using the form
a½τ−yτ þ ðβ − τÞ−yτ � with pi ðzþ ηÞ=z ¼ yτ ¼ 0.85ð2Þ.
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Results, HCB.—Because of the hard-core constraint
number, fluctuations are dramatically suppressed in the
HCB model. Combined with the very effective beta-
doubling scheme we can reach much lower temperatures
compared to the QR model. Hence, we use a simplified
form of Eq. (3),

ρ ¼ L2−d−z ~RðδL1=νÞ; ð8Þ

suppressing the temperature dependence. We have exten-
sively verified that this is permissible for the system sizes
used [30] and that our data appear independent of temper-
ature at β ¼ 512 to within numerical precision. We then
fit our data for ρ at β ¼ 512 to an expansion of ~R in Eq. (8)
to second order ~R ¼ aþ bδL1=ν þ cðδL1=νÞ2, obtaining
the estimates hc ¼ 4.79ð3Þ, z ¼ 1.88ð8Þ, ν ¼ 0.99ð3Þ to be
contrasted with the values hc ¼ 4.42ð2Þ, z ¼ 1.40ð5Þ, and
ν ¼ 1.10ð4Þ determined in Ref. [3] with significantly less
statistics. The result of this fit is shown in Fig. 4. In panel
b of Fig. 4, we show the crossing of the scaling function ~ρ,
at hc ¼ 4.79ð3Þ as carried out for the QR model in Fig. 1
to yield similar results for z, ν, and hc.
The correlation functions show a pronounced temper-

ature dependence as shown in Fig. 5(a) for CðrÞ. However,
as we lower the temperature, CðrÞ reaches a stable power-
law form at β ¼ 512 for all L studied, showing that the
regime β ≫ Lz is reached, confirming that the temperature
dependence can be neglected in Eq. (8). To determine the
anomalous dimension η we then fit the results in Fig. 5(a)
for L ¼ 20, β ¼ 512 and hc ¼ 4.79ð3Þ to a power-law form
with zþ η ¼ yr ¼ 1.718ð1Þ as shown in Fig. 5(b). Using
our earlier estimate of z, we obtain η ¼ −0.16ð8Þ in reaso-
nable agreement with the QR results. For the HCB model
we have also calculated the compressibility κ. It remains

roughly constant and independent of L through the tran-
sition. We note that our results significantly improve on
previous conflicting calculations for the exponents of
the HCB model which include z ¼ 2.0ð4Þ, ν ¼ 0.90ð13Þ
in [16], z ¼ 0.5ð1Þ, ν ¼ 2.2ð2Þ in [31], and z ¼ 1.40ð2Þ,
ν ¼ 1.10ð4Þ in [3].
Conclusion.—Our results for ν for both models studied

indicate clearly that ν ≥ 2=d is satisfied as an equality.
For the dynamical critical exponent z, describing the
BG-SF transition, we find a value that is significantly
larger than previous estimates. While there is a slight
disagreement in the estimate of z for the two models we
studied it seems possible that indeed z ¼ d. During the final
stages of writing this manuscript we became aware of
Ref. [32] which for the HCB model reached conclusions
similar to ours.
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