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We study the critical point for the emergence of coherence in a harmonically trapped two-dimensional
Bose gas with tunable interactions. Over a wide range of interaction strengths we find excellent agreement
with the classical-field predictions for the critical point of the Berezinskii-Kosterlitz-Thouless (BKT)
superfluid transition. This allows us to quantitatively show, without any free parameters, that the
interaction-driven BKT transition smoothly converges onto the purely quantum-statistical Bose-Einstein
condensation transition in the limit of vanishing interactions.
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Reducing the dimensionality of a physical system
increases the importance of thermal fluctuations and can
profoundly affect the type of order that the system can display
at low temperatures [1–4]. In a uniform two-dimensional
(2D) Bose gas, the true long-range order associated with
Bose-Einstein condensation (BEC) is precluded at any non-
zero temperature by the Mermin-Wagner theorem. However,
an interacting 2D Bose gas still undergoes the Berezinskii-
Kosterlitz-Thouless (BKT) transition to a superfluid state at a
critical phase-space density DBKT [5,6]. Quantitatively pre-
dicting DBKT requires an accurate description of the non-
perturbative behavior of interacting bosons in the fluctuation
region near the critical point. Classical-field simulations [7]
model this behavior by a turbulent matter-wave field [8],
and predict DBKT ¼ ln ð380=~gÞ, where ~g is a dimensionless
measure of the interaction strength [9]. This result makes
it manifest that the transition is interaction driven; the critical
temperature Tc ∝ n=DBKT, where n is the gas density,
vanishes in the noninteracting limit ~g → 0 for any noninfinite
n. While for phase-space densityD > DBKT true long-range
order is still absent, the first order correlation function g1ðrÞ
decays only algebraically at large distance, in contrast to
the exponential decay in the normal degenerate gas. Such
extended coherence is sufficient for superfluidity [10], and in
practice offers a signature of the phase transition [11–14].
In contrast to the infinite uniform system, in a 2D

harmonic trap, pertinent tomost ultracold-atom experiments
on BKT physics [15–29], the modified density of states
allows for a BEC transition to occur in the ideal gas (~g ¼ 0)
[30,31] (see also Ref. [32]). In an isotropic trap of frequency
ωr, it should occur at a critical atom number [30,31]
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This ideal-gas BEC transition is similar to the familiar
condensation in three dimensions; it is purely quantum

statistical and follows from Einstein’s standard argument of
the saturation of the excited states. However, the importance
of dimensionality emerges if interactions are introduced. In
three dimensions, ideal-gas BEC occurs when in the trap
centerD ≈ 2.612; weak interactions slightly shift the critical
atom number [33–35], but do not alter the BEC-like nature
of the transition. In two dimensions, while N0

c is finite, the
phase-space density required in the trap center for the
excited states to saturate is infinite, just as in a uniform
system [14]. For any ~g > 0 this is unattainable and the
excited states can accommodate any number of particles
[36]. The BEC transition is thus suppressed and one expects
it to be replaced by the BKT transition with noninfinite
DBKT [10].
These arguments suggest that the two conceptually very

different phase transitions, the interaction-driven BKT and
the saturation-driven BEC, are in fact continuously con-
nected as ~g → 0 [10,37]. The harmonic trapping potential
offers the opportunity to experimentally observe this
unification of BKT and BEC physics. While in an infinite
uniform gas no transition occurs for ~g ¼ 0, in a harmonic
trap a transition always occurs at a finite Nc and always
results in significantly extended coherence of the gas.
The nature of this transition is quantitatively encoded in
the value of Nc. This picture is supported by the calcu-
lations of the critical atom number NBKT

c [10,38], based on
the classical-field simulations [7,39], which suggest that
NBKT

c smoothly connects to N0
c in the limit ~g ¼ 0. In a

finite-size system the change from the BKT to the BEC
transition is a crossover that spans a nonzero range of ~g
values, but for realistic experimental parameters the width
of this crossover region is very small, ~g≲ 10−2 [18,40].
Various signatures of a phase transition, including

emergence of extended coherence [15,17–19,21] and
superfluidity [24], have been observed in trapped 2D gases
with different specific ~g values. On the other hand,
systematic studies with a tunable ~g have focused on in situ
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measurements of the equation of state [22,27], which do not
directly reveal any striking signatures of the infinite-order
BKT transition.
In this Letter, we systematically study the critical point

for the emergence of extended coherence in a harmonically
trapped 2D Bose gas over a wide range of interaction
strengths, 0.05 < ~g < 0.5. We show, without any free
parameters, that Nc generally agrees very well with the
beyond-mean-field calculation ofNBKT

c [38], and converges
onto N0

c of Eq. (1) as ~g → 0. The critical chemical potential
μc, which directly reveals uniform-system conditions for a
phase transition to occur in the trap center, also agrees with
the BKT theory and converges onto the BEC value, μc ¼ 0,
for ~g → 0. Our measurements also reiterate the importance
of the suppression of density fluctuations in the normal
state near the BKT critical point, previously observed in
Refs. [18,19,21–23].
The experiment was carried out using a 39K gas, in the

apparatus described in Ref. [41]. For 2D trapping, the
tight axial (vertical) confinement is provided by two
repulsive “blades” of blue-detuned light, formed by passing
a 532-nm Gaussian beam through a 0-π phase plate [20,42],
while a red-detuned 1064-nm dipole trap provides the
in-plane (horizontal) confinement. The radial and axial
trapping frequencies are ðωr;ωzÞ ≈ 2π × ð38; 4100Þ Hz.
For all of our measurements T ∈ ½140 nK; 190 nK� and
μ=kB < 100 nK, resulting in a small (< 30%) occupation
of the excited axial states. The interaction strength
~g ¼ ffiffiffiffiffiffi

8π
p

a=lz [14], where a is the s-wave scattering length
and lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmωzÞ

p
, is controlled via a Feshbach reso-

nance centered at 402.5 G [41,43].
To characterize long-range coherence of a gas we study

its (in-plane) momentum distribution nðkÞ [19]. A change in
the functional form of g1ðrÞ leads to a dramatic change in its
values at distances much larger than the thermal wavelength
λ ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBT

p
[14], and an increase of coherence over

some large distance L manifests itself in enhanced pop-
ulation of the low-momentum states k≲ 2π=L. Thus, unlike
the in-trap density distribution, which varies very smoothly
through the BKT critical point [18,19,22,23], nðkÞ can
provide a dramatic signature of the phase transition [19].
As illustrated in Fig. 1, to identify the critical point for a

given ~g, we start with a highly coherent 2D gas and measure
nðkÞ after holding the cloud in the trap for a variable time t.
During the hold time, the atom number N slowly decays
through various inelastic processes [44], while the elastic-
collision rate (≈ 0.2N ~g2 s−1) remains sufficiently high to
ensure that the gas is in quasistatic equilibrium. To measure
nðkÞ, we employ the “momentum focusing” technique
[19,29,45,46]. We turn off just the tight z confinement,
so the rapid vertical expansion (predominantly driven by
the zero-point motion along z) removes all the interaction
energy on a time scale 1=ωz ≪ 1=ωr. The subsequent
horizontal ideal-gas evolution in the remaining in-plane
harmonic potential reveals nðkÞ as the spatial distribution

after a quarter of the trap period. We probe this distribution
by absorption imaging along z [see Fig. 1(a)].
Our k-space imaging resolution, Δk ≈ 0.4 μm−1, sets

the largest distance over which we can probe coherence
to L ¼ 2π=Δk ≈ 15 μm, which is much larger than
λ ≈ 0.7 μm. To probe coherence on this length scale, we
simply monitor the peak value of the momentum distribu-
tion, P0, without making any theoretical assumptions about
the exact shape of nðkÞ at low k. To get the corresponding
atom number N we do a simple summation over the image.
Importantly, we eliminate the systematic error due to the
uncertainty in the absorption-imaging cross section by
independently calibrating our imaging system through
measurements of the BEC critical point in a 3D gas [47].
In Fig. 1(b) we show a typical evolution of P0 and N

(here ~g ¼ 0.28). While N decays smoothly, P0 shows two
distinct regimes, which allows us to identify the critical
hold time tc and the corresponding Nc. We note that even
for N significantly below Nc the peak of nðkÞ rises above a
Gaussian fitted to the wings of the distribution, indicating
some coherence on a length scale > λ [18,21]. The smooth
evolution of such non-Gaussian “peakiness” of nðkÞ does
not reveal a phase transition [21], and only P0 corres-
ponding to L ≫ λ shows a clear change in behavior at a
well-defined Nc [51]. Our large L is still small compared
to the thermal diameter of the cloud, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ðmω2

rÞ
p

≈
50 μm, so the observed Nc is closely linked to the
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FIG. 1 (color online). Determination of the critical point for the
onset of coherence, for ~g ¼ 0.28 and T ≈ 140 nK. (a) Evolution
of the momentum distribution nðkÞ with the hold time t (see text).
Extended coherence is revealed as a sharp peak in nðkÞ. Each
image is an average of three experimental realizations. (b) Evo-
lution of the momentum-distribution peak P0 and the smoothly
decaying total atom number N. We associate the thresholdlike
behavior of P0 with the critical time tc and deduce the
corresponding Nc. The solid line is a heuristic piecewise fit
function used to determine tc [47].
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occurrence of a phase transition in the center of the
trap [47].
For comparisons with theory, we also fit μ and T to each

nðkÞ image. Unlike in three dimensions, in two dimensions
interactions affect nðkÞ appreciably even in the normal
state, and near the critical point it is in general insufficient
to treat them at a mean-field (MF) level. However, beyond-
MF correlations primarily affect the highly populated low-k
states [38]. We restrict our fits to the high-k wings of
the distribution (ℏ2k2 > 2~gmkBT), where we expect the
beyond-MF effects to be small, and still carefully include
the effects of interactions at a MF level [47]. Following
Ref. [37], we also account for the residual thermal
occupation of the axial excited states and the interaction-
induced deformation of the axial eigenstates.
In Fig. 2 we summarize our measurements of the critical

atom number for a wide range of interaction strengths. To
compare our data with the strictly 2D theoretical calcula-
tions, we correct the observed “raw” Nc by subtracting the
calculated population of the excited axial states [47]. We
scale this corrected critical number N̄c to the BEC critical
atom number N0

c of Eq. (1) and plot it versus ~g. Our Δk-
limited value of L imposes a lower bound on ~g for which we
can reliably identify the critical point. In the absence of
any phase transition, in a weakly interacting degenerate gas
g1ðrÞ ∼ expð−r=l0Þ, with l0 ¼ λ expðD=2Þ= ffiffiffiffiffiffi

4π
p

[14].
We thus do not expect our measurements to reliably identify
Nc if l0 > L for some D < DBKT. This occurs for
~g < 380λ2=ð4πL2Þ ≈ 0.06, indicated by the shaded area
in Fig. 2. Our measurements also stop being reliable for
~g≳ 0.5; in that regime our MF temperature fits are
restricted to very high k values, which are affected by the

anharmonicity of the optical trap. The error bars in Fig. 2 are
statistical, while the systematic uncertainty in N̄c=N0

c is
≲0.2 [47].
Without any free parameters, we find generally excellent

agreement with the prediction of Ref. [38]:

NBKT
c

N0
c

≈ 1þ 3~g
π3

ln2
�

~g
16

�
þ 6~g
16π2

�
15þ ln

�
~g
16

��
; ð2Þ

which is based on fixing the phase-space density in the trap
center to DBKT and integrating a uniform-system equation
of state over the trap, using the classical-field results
of Ref. [39].
The agreement with Eq. (2) over a very broad range of

interaction strengths and the proximity of our lowest
reliable ~g values to zero allow us to conclude that the
critical atom number, without any free parameters, indeed
smoothly converges onto the BEC result of Eq. (1).
It is instructive to also compare our data with the

approximation NBKT
c =N0

c ¼ 1þ3~gD2
BKT=π

3 [10,12], shown
by the dashed line in Fig. 2. Here, the critical phase-space
density is again set toDBKT, but the suppression of bosonic
fluctuations in the normal state is neglected; i.e., the density
profile is calculated using MF theory with an interaction
potential 2gnðrÞ, where g ¼ ðℏ2=mÞ~g. Our data strongly
exclude this result, confirming the importance of the
suppression of density fluctuations near the critical point
even for our lowest ~g values.
For a more direct comparison with the uniform-system

theory, we also consider the critical chemical potential for
the onset of coherence. Like Nc in Fig. 1, μc is exper-
imentally defined via the critical hold time tc. The classical-
field simulations [7] predict DBKT to be reached for
μBKTc ¼ kBTð~g=πÞ ln ð13.2=~gÞ, which reduces to the BEC
prediction, μc ¼ 0, for ~g ¼ 0.
In Fig. 3 we plot ~μc ¼ μc=ðkBTÞ versus ~g, and again

observe generally good agreement with the classical-field
prediction (solid line), all the way down to ~g ≈ 0.06, i.e.,
very close to the expected BEC limit. The small systematic
difference between the data and the theory is comparable
to our systematic uncertainty in ~μc of ∼0.05 [47].
We also compare our data with two intuitive approx-

imations to ~μc. We consider interaction potentials γgn with
γ ¼ 2, corresponding to a fully fluctuating Bose gas, and
γ ¼ 1, corresponding to a complete suppression of density
fluctuations. In both of these extremes one can analyti-
cally write Dγð ~μÞ ¼ − ln ½1 − exp ð~μ − γgn=ðkBTÞÞ� [14].
Defining ~μγc so that Dγð ~μγcÞ ¼ DBKT we obtain the dashed
(γ ¼ 2) and dotted (γ ¼ 1) lines in Fig. 3. Generally,
γ ¼ 1 provides a better approximation, highlighting how
strong the suppression of density fluctuations in the normal
state is.
Finally, we note that in previous experiments [22,27], on

the in-trap equation of state, ~μc was deduced by defining it
so as to satisfy the theoretical expectation [7,39] that the
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FIG. 2 (color online). Critical atom number as a function of the
interaction strength ~g. All numbers are scaled to the ideal-gas
BEC critical number N0

c, defined in Eq. (1). The solid line is the
classical-field BKT prediction of Eq. (2), without any free
parameters. The dashed line is an approximation that neglects
suppression of density fluctuations in the normal state. The star
ð⋆Þ denotes the critical point for BEC, which only occurs in the
ideal-gas limit. The shaded region, ~g < 0.06, indicates the regime
in which our measurements stop being reliable (see text). The
error bars are statistical.
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phase-space density should be a universal function of
ð~μ − ~μcÞ=~g. Our measurements of ~μc, defined through
the emergence of extended coherence, show that the two
definitions indeed lead to very similar values.
In conclusion, by studying the critical point for the

emergence of extended coherence in a harmonically
trapped 2D gas with tunable interactions, we have quanti-
tatively confirmed the predictions of classical-field theory
and observed the expected unification of BKT and
BEC transitions in the limit of vanishing interactions.
The in-plane harmonic potential enables this observation.
However, to quantitatively study the exact functional form
of the slowly decaying correlations in a BKT superfluid, in
the future it would be very interesting to study coherence of
a tunable 2D gas in a uniform potential [52–54]. Just below
Tc this should reveal an interaction–strength–independent
algebraic decay of the first-order correlation function,
corresponding to a universal jump in the superfluid
density [55].
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