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Multiscale gyrokinetic turbulence simulations with the real ion-to-electron mass ratio and β value are
realized for the first time, where the β value is given by the ratio of plasma pressure to magnetic pressure
and characterizes electromagnetic effects on microinstabilities. Numerical analysis at both the electron
scale and the ion scale is used to reveal the mechanism of their cross-scale interactions. Even with the real-
mass scale separation, ion-scale turbulence eliminates electron-scale streamers and dominates heat
transport, not only of ions but also of electrons. Suppression of electron-scale turbulence by ion-scale
eddies, rather than by long-wavelength zonal flows, is also demonstrated by means of direct measurement
of nonlinear mode-to-mode coupling. When the ion-scale modes are stabilized by finite-β effects, the
contribution of the electron-scale dynamics to the turbulent transport becomes non-negligible and turns out
to enhance ion-scale turbulent transport. Damping of the ion-scale zonal flows by electron-scale turbulence
is responsible for the enhancement of ion-scale transport.
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Introduction.—Microinstabilities and associated turbu-
lent transport in magnetized plasma are a key issue in
magnetic fusion research. In particular, since fusion-born α
particles dominantly heat electrons, electron heat transport
is critically important for burning plasma experiments.
Despite its importance, understanding of electron heat
transport is not yet well established because of the difficulty
of handling its multiscale nature. Electron heat transport is
inherently governed by multiscale plasma turbulence, from
extremely fine electron scales at a wavelength on the order
of the electron thermal gyroradius ρte [e.g., the electron
temperature gradient modes (ETGs)] to fine ion scales at a
wavelength on the order of the ion thermal gyroradius ρti
[such as the ion temperature gradient modes (ITGs), and the
trapped electron modes (TEMs)] [1].
ETG turbulence accompanied by radially elongated

eddies (so-called streamers) has long been regarded as a
candidate to be the main cause of anomalous electron heat
transport [2,3]. Although earlier works typically assume a
scale separation between ETG and ITG/TEM turbulence
and resolve turbulence at only the electron scales, the
possibility of cross-scale interactions has also been
explored [4–6]. Theoretical analysis suggests that elec-
tron-scale turbulence is sensitive to shearing by relatively
short-wavelength ion-scale turbulence, but the reaction in

the other direction, from electron scales to ion scales, is
supposed to be weak [7]. This notion is also supported by
recent gyrokinetic simulation studies such as Refs. [8–10],
where the ITG turbulence strongly suppresses the
ETG turbulence and dominates heat transport of both
ions and electrons. Previous simulations have been
limited, using only reduced ion-to-electron mass ratios
(mi=me ¼ 400; 900) and electrostatic approximation, that
is, at the limit of zero plasma pressure (β ¼ 0). However,
the latest comparison with experiments showed that
reduced-mass simulation failed to provide even qualitative
insight for marginally stable ITG turbulence [11]. The
succeeding work also suggested the importance of real-
mass multiscale simulation, but the underlying physics is
thoroughly left to be revealed [12]. Therefore, the following
points remain to be clarified for the more general case:
(i) whether the multiscale interactions play a role in
reduction of the electron heat transport even with the real
hydrogen-to-electron mass ratio (mi=me ¼ 1836), where
the electron and ion scales are separated by a factor of the
square root of the mass ratio when their temperatures are
the same; and (ii) whether ion-scale turbulence dominates
heat transport even when the real β value is used, which
means that electromagnetic (finite-β) effects stabilize the
ITGs. To resolve these issues, we carry out multiscale
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ITG/TEM/ETG plasma turbulence simulations, employing
the real mass ratio and the finite β value, which are
first realized by developing a massively parallel algorithm
for the finite-difference and spectral methods used in
the electromagnetic gyrokinetic simulation code GKV
[13–15].
Numerical experiments yield clear answers to the above

questions. (i) There are significant cross-scale interactions,
even with the real mass ratio. (ii) When the ITGs are
stabilized by finite-β effects, contributions from electron
scale turbulence are non-negligible. The resultant heat
transport in multiscale turbulence deviates from that in
single-scale turbulence because of the influence of cross-
scale interactions. In contrast to previous studies that have
described suppression of electron-scale turbulence by ion-
scale turbulence (the i → e interaction), we newly discov-
ered that electron-scale turbulence can influence ion-scale
turbulence via damping of zonal flows and thereby enhance
turbulent transport (the i← e interaction).
Simulation model.—GKV solves the time evolution of

ion and electron distributions and electromagnetic fluctua-
tions in a flux-tube model [14], where compressional
magnetic field perturbations are neglected because of
β ≪ 1 [16]. Plasma parameter values are set to be the
so-called Cyclone DIII-D base case parameters: the density
and temperature gradient ratio are set at Ln=LTi

¼
Ln=LTe

¼ 3.1, the temperature ratio at Ti=Te ¼ 1, the
safety factor at q ¼ 1.4, the magnetic shear at ŝ ¼ 0.78,
and the inverse aspect ratio at r=R ¼ 0.18 [8]. Extending
the work of previous studies, we here employ the real
hydrogen-to-electron mass ratio and the experimen-
tally relevant β value, letting mi=me ¼ 1836 and β≡
2μ0ðniTi þ neTeÞ=B2 ¼ 2.0%, where μ0 and B denote,
respectively, vacuum permeability and magnetic field
strength. Both the electron and ion scales are modeled in
a simulation box of −48ρti<x<48ρti, −47ρti < y < 47ρti,
−π < z < π, −4vts < v∥ < 4vts, and 0 < μ < 8Ts=B with
a resolution of 1024 × 1024 × 64 × 96 × 16 grid points.
Coordinates represent the radial, poloidal, and parallel
space coordinates, the parallel velocity, and the magnetic
moment, in that order. As a benchmark, we also carry out a
multiscale turbulence simulation at the electrostatic limit
(β ¼ 0.04%). The required computational costs were
∼120 h for the electrostatic case and ∼420 h for the
electromagnetic case, using 12 288 nodes (98 304 cores)
on the K computer, the current flagship supercomputer in
Japan [17].
Multiscale instabilities and turbulence.—Linear growth

rates of multiscale instabilities are shown in Fig. 1(a),
where the effects of the real mass ratio and β value can be
clearly identified. Low wave number modes at kyρti < 0.6
are ITGs, and TEMs at kyρti ∼ 1 (distinguished from
sensitivities to collisionality and mirror force) smoothly
connect to high wave number ETGs. The wave numbers
providing the maximum growth rate of the ITGs and ETGs

are kyρti ∼ 0.3 and kyρti ∼ 12 (kyρte ∼ 0.3), respectively,
which are separated by the square root of the ion-to-
electron mass ratio,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
∼ 43. Comparison of the two

cases with different β values shows that ITGs are stabilized
by the finite-β effects [18], while the ETGs are unaffected
by β. Microtearing modes and kinetic ballooning modes,
which are also candidates for anomalous electron and ion
heat transport in high-β plasma [19,20], are not destabilized
in the tested cases.
The time evolution of multiscale turbulence calculated

with the real mass ratio and β value is presented in Fig. 1(b).
The field energy of a Fourier mode is denoted by Wk ¼
h½ε0k2⊥þP

se
2
sn0=Tsð1−Γ0skÞ�jϕkj2=2þ k2⊥jA∥kj2=ð2μ0Þi,

where ε0, Γ0sk, ϕk, and A∥k are the vacuum permittivity, a
gyrophase average operator in the wave number k space, the
electrostatic potential, and the parallel component of the
vector potential, respectively. Small-scale ETGs rapidly
grow, and their growth is saturated by creating radially
elongated streamers, where extremely fine (4 < kyρti) modes
account for more than 80% of the field energy. Although
ETG turbulence dominates before tvti=R ¼ 20, the ITGs
grow linearly, suppressing the ETG turbulence in the interval
20 < tvti=R < 40. As a result, even with the real mass ratio
and β value, ITG turbulence with zonal flows (characterized
by ky ¼ 0 modes) becomes dominant in the quasisteady
state found in the later phase of the simulation.
The resultant heat transport spectra are shown in Fig. 2.

As a reference, we also plot the spectra of single-scale
“low-k” and “high-k” simulations, resolving only ion scales
(kyρti < 1.3) or electron scales (kyρti > 1.3), respectively,
where the parameter values are the same as used for the
multiscale “full-k” simulation (except the perpendicular
box sizes or resolutions). In the electrostatic case
(β ¼ 0.04%), where the ITGs are highly unstable, the
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FIG. 1 (color online). (a) Linear instabilities: Linear growth rate
γ, plotted against the poloidal wave number ky. Square (red) and
circular (blue) marks indicate electrostatic (β ¼ 0.04%) and
electromagnetic (β ¼ 2.0%) cases, respectively. (b) Nonlinear
evolution: Time evolution of the field energy Wk for the
β ¼ 2.0% case. The solid (red), long-dashed (green), short-
dashed (blue), and dotted (rose) lines correspond to the zonal
(kyρti ¼ 0), ITG/TEM (kyρti ≤ 1), intermediate (1 < kyρti ≤ 4,
represented as Med.), and ETG (4 < kyρti) modes, respectively.
The straight line shows the slope of the linear growth rate of the
ITG with γ ¼ 0.12vti=R.
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ion-scale turbulence strongly suppresses the electron-scale
modes and dominates the energy diffusivity of both ions
and electrons. In that case, the low-k simulation shows
reasonable agreement with the full-k case [Fig. 2(a)]. In the
electromagnetic case (β ¼ 2.0%), where the linear growth
rates of ITGs are reduced by finite-β effects, it is addi-
tionally seen that the ion-scale turbulence dominates energy
diffusivity. Compared with the electrostatic case, however,
the suppression of the electron-scale transport is relatively
weak, and the remaining electron-scale turbulence leads to
enhancement of the ion-scale transport, the level of which
is threefold that in the low-k simulation [Fig. 2(b)]. This
means that the electron-scale turbulence can influence the
ion-scale dynamics when the ion-scale instabilities are
weak. Because of these cross-scale interactions, the trans-
port spectrum in multiscale turbulence is not a simple sum
of single-scale spectra. We note that the ion energy
diffusivity exhibits similar behavior. The total ion energy
diffusivity in the electrostatic case (β ¼ 0.04%) is
χi ¼ 19.3χgB, and the electron energy diffusivity is
χe ¼ 6.3χgB in the gyro-Bohm units χgB ¼ vtiρ2ti=R; these
results are consistent with the values given in the literature
[8,10]. In the electromagnetic case (β ¼ 2.0%), although
the ion energy diffusivity is reduced to χi ¼ 3.6χgB, the
electron energy diffusivity maintains a level similar to
before, at χe ¼ 4.4χgB. This is because the transport caused
by the magnetic flutter compensates for the reduction of
transport caused by E × B convection.
Cross-scale interactions.—The multiscale gyrokinetic

turbulence simulations clearly demonstrate that there are
cross-scale interactions between electron and ion scale
turbulence, even when using the real mass ratio, and that
ITG turbulence can be dominant even when growth rates
are reduced by the finite-β effects. To clarify the cross-scale
interactions, we analyze the gyrokinetic entropy transfer
[21], written as

Ik ¼
X
p

X
q

Jp;qk ; ð1Þ

where the triad transfer is given by

Jp;qk ¼
X
s

δkþpþq;0
b · p × q

2B

× Re

��Z
dv3ðψ̄ spgsq − ψ̄ sqgspÞ

Tsgsk
FsM

��
; ð2Þ

with the gyrophase-averaged generalized potential at ψ̄ sk ¼
ðϕ̄k − v∥Ā∥kÞ and the nonadiabatic part of the perturbed
distribution function at gsk for the species s. Angle brackets
h� � �i denote the flux-surface average. The gyrokinetic
entropy transfer is regarded as a kinetic generalization of
the fluid Reynolds and Maxwell stresses, and describes the
driving or damping of the mode via nonlinear mode
coupling, that is, via the E × B and magnetic nonlinearities.
Under the resonant condition kþ pþ q ¼ 0, the triad
transfer satisfies the symmetry condition Jp;qsk ¼ Jq;psk and

the detailed balance Jp;qsk þ Jk;psq þ Jq;ksp ¼ 0. The exact
gyrokinetic form is employed for evaluating the net transfer
in Fig. 4(a), but we use a fluid approximation of the triad
transfer based on the Hermite and Laguerre expansion (for
v∥ and μ, respectively) up to the third-order moments in
Fig. 3. This reduces the computational cost for the analysis
while still maintaining sufficient accuracy.
We now apply triad transfer analysis to investigate

the suppression of the electron-scale transport by the
ion-scale turbulence. Figure 3 shows that the nonlinear
entropy transfer of electron-scale streamers is dominated
by short-wavelength (k⊥ρti ∼ 1) ITG turbulent eddies,
rather than by long-wavelength zonal flows or electron-
scale modes. Via nonlinear mode coupling with short-
wavelength ITG turbulent eddies, the normal entropy
cascade occurs, meaning that the streamer receives entropy
from lower wave number (k⊥ρti < 4.4) modes and passes it
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FIG. 2 (color online). Poloidal wave number spectrum of the
time-averaged electron energy diffusivity χek for (a) electrostatic
(β ¼ 0.04%) and (b) electromagnetic (β ¼ 2.0%) cases. The solid
(red), dotted (blue), and dashed (green) lines plot χek as obtained
from the full-k, low-k (kyρti < 1.3), and high-k (kyρti > 1.3)
simulations, respectively.
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Arrows represent dominant triad couplings. Negative and
positive values of Jp;qk , respectively, mean that the streamer gives
and receives entropy via coupling with resonant modes
kþ pþ q ¼ 0.
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to higher wave number (k⊥ρti > 4.4) modes. These direct
measurements of nonlinear mode-to-mode interactions
provide explicit evidence for one of Holland’s suggestions:
electron-scale turbulence may be sensitive to shearing by
relatively short-wavelength ion-scale turbulence [7].
Additionally, we investigate the mechanism of the

enhancement of ion-scale transport by electron-scale tur-
bulence in the β ¼ 2.0% case. Although one possible
mechanism for enhancement is direct driving of ITG
turbulence via an inverse cascade from electron-scale
turbulence, electron-scale turbulence is governed by the
normal cascade, as shown by triad transfer analysis (Fig. 3).
The ITG turbulence seems to be saturated through the
coupling with zonal flows, as is often observed in studies of
ITGs. Hence, by focusing on zonal flows, we compare the
results of the full-k simulation with those of the low-k one,
which starts from t ¼ 23R=vti (i.e., at the beginning
of the ITG linear growth). In Fig. 4(a), the entropy
transfer from turbulent (nonzonal) modes to zonal
modes is plotted as ĪkZF ¼

P
ky¼0Ik=Xdrive, normalized

by the driving term in the entropy balance equation,
Xdrive ¼

P
sðTsΓs=Lps

þ Θs=LTs
Þ, where Γs and Θs are

the turbulent particle and heat fluxes, respectively, and
L−1
ps

¼ L−1
n þ L−1

Ts
[22]. This demonstrates that the full-k

simulation generates zonal modes less efficiently than the
low-k simulation, which excludes the electron-scale
dynamics. In other words, electron-scale turbulence weak-
ens the generation of zonal flows. More specifically, a
detailed triad transfer analysis shows that the zonal modes
are generated by mainly ion-scale turbulence, and electron-
scale turbulence contributes to damping of the zonal
modes, which reduces the generation rate by ∼20%. The
zonal-mode damping effect is clearly found in the time
evolution of the ratio of zonal to nonzonal field energy
ζ ¼ P

ky¼0Wk=
P

ky≠0Wk, plotted in Fig. 4(b). The ratio of
zonal to nonzonal field energy in the full-k simulation is
lower than that in the low-k simulation. The absolute value
of the field energy and the shearing rate of the zonal flows

are comparable between the two simulations. This indicates
that ITG instability growth is saturated when sufficiently
strong zonal flows are generated. Because the zonal flow
generation rate in the full-k simulation is smaller than that
in the low-k simulation, ion-scale turbulence in the full-k
simulation has to be enhanced more strongly, so that it
keeps the zonal flows strong enough via the Reynolds
stress. As a result, ion-scale turbulence in the full-k
simulation is driven at a higher level than that in the
low-k simulation. Although we note that saturation proc-
esses of turbulence are not only limited to zonal flow
generation (but also inverse energy cascade, etc.,), zonal
flows and their damping may play important roles near the
marginal stability condition such as the Dimits shift [23].
Indeed, in the β ¼ 2.0% case, the ITGs are close to
marginal stability due to electromagnetic stabilization,
and the electron-scale turbulence exerts a damping effect
on the ion-scale zonal flows and leads to transport enhance-
ment, which is not observed in the single-scale low-k
simulation. This damping effect also occurs in the electro-
static case (β ¼ 0.04%), but its contribution there is
negligible relative to ion-scale turbulence when the ITGs
are strongly unstable. Finally, we refer to a study employ-
ing experimental inputs and geometry, which showed that
electrostatic multiscale simulations would also give
enhanced low-k transport in the case of weak ITG insta-
bility [12]. Their results support the importance of cross-
scale interactions in real experiments, and can be explained
by the mechanisms presented here.
Summary.—This study examined multiscale ITG/TEM/

ETG turbulence, revealing that cross-scale interactions
exist, even when the real mass ratio and a finite β value
are used. Ion-scale turbulence is found to strongly suppress
electron-scale turbulence and dominate heat transport of
both ions and electrons. When the ITGs are less unstable as
a consequence of finite-β effects, the damping effect of
electron-scale turbulence on ion-scale zonal modes is
considerable and enhances the transport levels. These
results suggest that simulations resolving only the ion-
scale dynamics give good estimates when the ion-scale
modes are highly unstable. However, when the ion-scale
modes are near marginal stability, the influence of electron-
scale turbulence is an important factor in characterizing the
turbulent transport of ions and electrons, acting through
effective damping of ion-scale zonal flows. These new
findings urge us to innovate our view of turbulent transport
from a conventional scale separation approach to a multi-
scale paradigm, and provide a valuable insight into the
physics of multiscale turbulence on two different energy
injection scales.
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