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We demonstrate PT -symmetry-breaking chaos in an optomechanical system, which features an ultralow
driving threshold. In principle, this chaos will emerge once a driving laser is applied to the cavity mode and
lasts for a period of time. The driving strength is inversely proportional to the starting time of chaos. This
originally comes from the dynamical enhancement of nonlinearity by field localization in the
PT -symmetry-breaking phase. Moreover, this chaos is switchable by tuning the system parameters so
that a PT -symmetry phase transition occurs. This work may fundamentally broaden the regimes of cavity
optomechanics and nonlinear optics. It offers the prospect of exploring ultralow-power-laser-triggered
chaos and its potential applications in secret communication.
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Cavity optomechanics is a rapidly developing research
field exploring the radiation-pressure interaction between
the electromagnetic and mechanical systems [1]. Thanks to
this nonlinear interaction, the optomechanical system
(OMS) provides an alternative platform for implementing
many interesting quantum [2–8] and classical [9–17] non-
linearity phenomena. In particular, one can strong drive
the cavity so that the OMS enters into a regime of self-
induced oscillations [9–12], where the backaction-induced
mechanical gain overcomes mechanical loss. Further
increasing the strength of the driving laser, chaotic motion
emerges in both the optical and mechanical modes requir-
ing no external feedback or modulation [13–16]. It is useful
for generating random numbers [18] and implementing
secret information processing [19–21]. However, to apply
chaos into the secret communication scheme requiring low-
power optical interconnects, the chaos threshold should be
reduced dramatically [22,23].
The notion of parity-time (PT ) symmetry, initially

proposed in quantum mechanics [24], has recently attracted
enormous attention in the field of optics [25–39]. It is
known [24] that PT-symmetric Hamiltonians can exhibit a
real eigenvalue spectrum in spite of the fact that they can be
non-Hermitian. These systems have the interesting property
of undergoing an abrupt phase transition where the system
loses its PT symmetry. At the exceptional point (EP), pairs
of eigenvalues collide and become complex. Typically, the
transition between the PT-symmetric phase (real spectrum)
to spontaneously broken PT symmetry (complex spectrum)
occurs as a parameter in the Hamiltonian (which somehow
controls the degree of non-Hermiticity) is varied [25–27].
This phase transition has been demonstrated in synthetic
waveguides and microcavities and can induce unique
optical phenomena including loss-induced transparency
[28], power oscillations violating left-right symmetry

[29], low-power optical diodes [35], and a single-mode
laser [36,37]. A natural question is whether it could
influence the chaos dynamics (especially the chaos thresh-
old) significantly. Moreover, the crossover between the
PT -symmetry theory and chaos in optomechanics remains
largely unexplored, which may substantially advance the
fields of cavity optomechanics and nonlinear optics.
Here, we propose a PT -symmetry-breaking chaos

[40] by investigating the nonlinear dynamics of a PT -
symmetric OMS. In contrast to normal chaos, it is con-
trollable by manipulating PT -symmetry phase transition
and allows an ultralow driving threshold, such as the weak-
driving regime; i.e., the driving strength Ωd is smaller than
the cavity decay rate γ. Physically, in PT -symmetry-
breaking phase (PT BP), the field localization induces
the dynamical accumulations of the optical and acoustical
energy in the passive cavity, corresponding to an increasing
optomechanical nonlinearity with time evolution. This
ultimately leads to the result that the chaotic motion can
be triggered even if an ultralow-power-driving laser lasts
for a period of time. As far as we know, this unconventional
PT-breaking chaos, featuring an ultralow threshold, is
identified for the first time in optomechanics, which may
stimulate further investigations and applications in different
optical, acoustic, or electric PT-breaking devices, with
other types of nonlinearity in the loss element.
System.—Consider an OMS coupled to an active cavity

via optical tunneling, i.e., the PT -symmetric OMS [see
Fig. 1(a)], with the Hamiltonian

Ĥ ¼ Ĥc þ ℏωmb̂
†b̂ − ℏg0â

†
1â1ðb̂† þ b̂Þ; ð1Þ

where â1 (â†1) and b̂ (b̂†) are the annihilation (creation)
operators of the passive cavity mode and mechanical mode,
respectively. The passive cavity â1 couples to an active
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cavity â2 (with the same resonance frequency ωc) and
is driven with frequency ωd and amplitude Ωd. Here Ωd is
related to the input power P and decay rate γ
by jΩdj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Pγ=ℏωd

p

. The Hamiltonian of the cavity
part can be written as Ĥc=ℏ ¼ Δcðâ†1â1 þ â†2â2Þ−
Jðâ†1â2 þ H:c:Þ − iΩdðâ†1 − â1Þ, with Δc ¼ ωc − ωd in a
frame rotating with ωd. The dimensionless position and
momentum operators of themechanical oscillator are defined
as x̂ ¼ ð1= ffiffiffi

2
p Þðb̂† þ b̂Þ and p̂ ¼ ði= ffiffiffi

2
p Þðb̂† − b̂Þ, respec-

tively. The third term in Eq. (1) describes the radiation-
pressure interaction between the passive cavity and the
mechanical oscillator with coupling strength g [41]. In
principle, this PT -symmetric OMS could be realized in
many types of OMS [1], such as coupled microtoroidal
resonators [35–37] [see Fig. 1(b)].
To explore the nonlinear dynamics of system, we employ

the semiclassical Langevin equations of motion (setting
o ¼ hôi, where o is an any optical or mechanical operator)

_x ¼ ωmp; ð2aÞ

_p ¼ −ðγm=2Þp − ωmxþ
ffiffiffi

2
p

g0ja1j2; ð2bÞ

_a1 ¼ ð−iΔc − γ=2Þa1 þ iJa2 þ i
ffiffiffi

2
p

g0a1xþ Ωd; ð2cÞ
_a2 ¼ ð−iΔc þ κ=2Þa2 þ iJa1: ð2dÞ

Here the quantum correlations of photon-phonon have
been safely ignored in the semiclassical approximation,
which is valid in the concerned weak-coupling regime, i.e.,
g0=γ ≪ 1 [13,16]. Equations (2) show that the intracavity
field intensity and the mechanical deformation influence
each other during evolution via the optomechanical inter-
action. Generally, this can lead to a chaotic motion of the
optical and mechanical modes at a very high-power laser
driving [13,16]. However, as shown in Fig. 1(c), the present
coupled OMS features a PT -symmetry phase transition
when J=γ or κ=γ passes through the EP, i.e., J ¼ ðγ þ κÞ=4,

where the eigenvalues and the corresponding eigenstates
of the system coalesce. This property might influence
the nonlinear dynamics of the system significantly. Here
the EP is obtained by diagonalizing the coefficient matrix
of Eqs. (2c) and (2d) under the condition of ignoring t
he optomechanical-interaction-induced shift of EP, which is
valid in the weak-coupling regime g0=γ ≪ 1 [42].
Governed by Eqs. (2), the evolution trajectory of system

is specified by the initial condition. To characterize the
stochastic properties of system, we linearize Eqs. (2)
and introduce the evolution of a perturbation ~δ ¼
ðδx; δp; δa1r; δa1i; δa2r; δa2iÞ, i.e., _~δ ¼ M~δwith coefficient
matrix

M ¼

0

B

B

B

B

B

B

B

B

@

0 ωm 0 0 0 0

−ωm −γm=2 2
ffiffiffi

2
p

g0a1r 2
ffiffiffi

2
p

g0a1i 0 0

−
ffiffiffi

2
p

g0a1i 0 −γ=2 Δc −
ffiffiffi

2
p

g0x 0 −J
ffiffiffi

2
p

g0a1r 0 −Δc þ
ffiffiffi

2
p

g0x −γ=2 J 0

0 0 0 −J κ=2 Δc

0 0 J 0 −Δc κ=2

1

C

C

C

C

C

C

C

C

A

;

which characterizes the divergence of nearby trajectories in
phase space. Here δakr and δaki are, respectively, the
perturbation of the real part and the imaginary part of ak
(k ¼ 1; 2).

PT -symmetry-breaking-induced chaos.—By numeri-
cally solving Eqs. (2), in Figs. 2(a) and 2(b), we present
the power spectrum of the field intensity I1 ¼ ja1j2 in
PT SP and PT BP, respectively, corresponding to a fixed

FIG. 1 (color online). (a) A schematic illustration of a
PT -symmetric OMS including a passive OMS (with cavity
mode â1 and a mechanical mode b̂) coupled to an active cavity
â2 with tunneling strength J. Here âin1 and âout1 are the input and
output, respectively, of a driving field with frequency ωd; γ (γm)
and κ are, respectively, the optical (mechanical) decay rate and
gain rate. (b) The realization of a PT -symmetric OMS in coupled
microtoroidal resonators. (c) The phase diagram in terms of J=γ
and κ=γ indicates the PT SP and PT BP in the passive-active
system, as well as the parameter regime corresponding to the
passive-passive system.

PRL 114, 253601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
26 JUNE 2015

253601-2



driving power P ¼ 1 μW and time interval 8 → 9 μs. On
one hand, it shows that the cavity mode is periodically
modulated by the mechanical oscillation with frequency
ωm in PT SP at a weak tunneling coupling J ¼ 0.46γ [very
close to the EP J ¼ ðγ þ κÞ=4 ¼ 0.45γ]. When J is
increased so strong that it could be comparable with (or
larger than) the optical linewidth γ, a resolved normal-
model splitting with width Δω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16J2 − ðγ þ κÞ2
p

=2
appears around the center frequency and mechanical side-
band due to the strong tunneling effect between the active
and passive cavities. On the other hand, decreasing J=γ
pushes the system into the PT BP, and the power spectrum
becomes a continuum characterizing the emergence of
chaotic motion. Here the driving power 1 μW is well
below the threshold of normal optomechanical chaos for
more than 3 orders due to the field-localization-enhanced
nonlinearity. Moreover, in the inset in Fig. 2(b), we present
the bifurcation diagram (corresponding to the time interval
8 → 9 μs) as the control parameter J=γ is varied, which
shows that the system dynamics experiences regular,
period-doubling bifurcation to chaos behaviors from
PT SP to PT BP.
In Figs. 2(c) and 2(d), we present the dependence of the

Lyapunov exponent [43] on J=γ, κ=γ, and Ωd=γ. The
Lyapunov exponent is defined by the logarithmic slope of

the perturbation δI1 (δI1 ¼ ja1 þ δa1j2 − ja1j2) versus time
t and characterizes the separation of trajectories for
identical systems with an infinitesimally close initial
condition. It is obtained by numerically solving Eq. (2)
and the perturbation equation

_~δ ¼ M~δ [13]. It clearly shows
that the chaotic motion appears when one tunes the system
parameters so that PT symmetry is broken, which provides
an alternative method to control chaotic dynamics with a
PT -symmetry phase transition. Moreover, Fig. 2(d) also
shows that the chaos allows an ultralow threshold, such as
the weak-driving regime Ωd ¼ 0.5γ corresponding to
P ¼ 0.02 pW for a microcavity system [35]. Note that
the oscillation amplitude of cavity intensity is not very large
in the PT SP. However, the semiclassical equation (2) is
still valid, which is ensured by the bad-cavity regime, i.e.,
g0=κ ≪ 1, and by using classical driving [13,16]. Hence,
the Lyapunov exponent in Fig. 2 obtained from Eq. (2) can
be trusted, which is also consistent with the evolution of the
system in Fig. 3.
Dynamical trajectories in different PT phases.—To

understand the ultralow threshold chaos in PT BP, in
Figs. 3 and 4, we present the evolutions of the intracavity
intensities I1 and I2 and the mechanical displacement x in
PT SP and PT BP, respectively.
Figure 3 shows the amplitude oscillations in I1, I2, and x,

characterizing the strong energy exchanges between the
passive cavity and the active cavity as well as the
mechanical oscillator (see the purple dashed line). This
ultimately leads to the periodic dynamics of the optical and
mechanical modes at a low driving power in PT SP.
Accordingly, the optical and mechanical trajectories are
limited into the regular circles with a periodically varying

FIG. 2 (color online). Power spectrum LnSðωÞ of the intra-
cavity field I1 ¼ ja1j2 in PT SP (a) and PT BP (b). The inset in
(b): Bifurcation diagram versus J=γ. Lyapunov exponent versus
(c) J=γ, inset of (c) κ=γ, and (d) Ωd=γ corresponding to a fixed
time interval with 0.5 μs. The shadowed blue region of the inset
in (b) and (c) corresponds to PT BP, and the red arrows indicate
the EPs. The inset in (d) corresponds to a case of weak driving,
i.e., the black square in (d). According to recent microcavity
experiments [35], the parameters are ωc ¼ 190 THz,
ωm=2π ¼ 23 MHz, γ=2π ¼ 1 MHz, g0 ¼ 7.4 × 10−5γ,
γm=2π ¼ 0.038γ, κ ¼ 0.8γ, Δc ¼ ωm, and (a)–(c) P ¼ 1 μW
(or Ωd=γ ≈ 4000) (d) J ¼ γ and J ¼ 0.2γ correspond to the blue
circle and red square, respectively.

FIG. 3 (color online). Evolutions of (a) the intracavity inten-
sities I1 (passive cavity), I2 (active cavity), and (b) the dimen-
sionless mechanical displacement x in PT SP, i.e., J ¼ γ. The
insets: The trajectories of (a) the optical mode, i.e., the first
derivation of I1 versus I1, and (b) the mechanical mode, i.e., p
versus x, in phase space corresponding to a fixed time interval
8 → 9 μs. The purple dashed lines indicate the amplitudes of I1,
I2, and x at 1.6 μs. The purple arrows indicate the approximate
evolution direction of the trajectories. The parameters are the
same as Fig. 2 except for P ≈ 0.02 pW, i.e., Ωd ¼ 0.5γ.
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radius with evolution (see the insets in Fig. 3). Physically,
this is because, in PT SP, the cavity-tunneling effects
characterized by J are stronger than the intracavity locali-
zation effects characterized by ðκ þ γÞ=4. Without strong
optical driving, the weak intracavity intensity I1 cannot
induce enough optomechanical nonlinearity to lead to a
chaotic motion.
Figure 4 shows that, in PT BP, the optical fields are

localized respectively into their cavities (no clear energy
oscillation between two cavities), and the chaotic motions
of the optical and mechanical modes appear after a
proper evolution even in the weak-driving regime, i.e.,
Ωd=γ ¼ 0.5. Comparing with the case of PT SP, here the
evolution of I1 is more complicated, which can be divided
into three distinguishable processes. (i) An analogous
collapse and revival appear due to the interplay between
the optical loss and driving. The trajectories in phase space
feature a set of limited circles accordingly. (ii) It presents
an exponential growth almost without oscillation with
evolution, which demonstrates an enormous energy accu-
mulation during this time interval. The approximate log-
arithmic-spiral trajectory in phase space also indicates this
property. Physically, it comes from the unidirectional
energy transfer from the active cavity to the passive cavity
in PT BP, which also can submerge a probe laser injected
from the active cavity and lead to a nonreciprocity trans-
mission [35]. (iii) Chaotic motions of the optical and
mechanical oscillations emerge and last with evolution.
The trajectories in phase spaces become very complicated

[look like three-dimensional spirals; see Fig. 4(c)].
Accordingly, the mechanical trajectory goes trough similar
processes [see Fig. 4(b)]. Note that the present chaos is
bounded in the chaos regime due to the enhanced opto-
mechanical nonlinearity, as shown in the inset in Fig. 4(c),
i.e., the evolution of system in the long-time limit. Based
on the above, one can conclude that the essence of
PT -symmetry-breaking chaos is the localization-induced
dynamical-intensity accumulation in PT BP. Therefore,
this chaos can be triggered even if an arbitrary small
amount of power is applied to the system. Because strong
intercavity intensity can be accumulated during processes
(i) and (ii) due to the effect of field localization, it can
induce enough large optomechanical nonlinearity required
by chaotic motion.
Comparison with the normal chaotic dynamics.—The

above PT -symmetric dynamics is quite different from
the nonlinear dynamics in the normal passive system,
especially in the chaotic regime. When κ < 0, the PT -
symmetric system returns to a passive-passive system [see
Fig. 1(c)], whose dynamical evolutions are presented in
Figs. 5(a) and 5(b). The comparison between Figs. 3(a)
and 5(a) shows an enhanced optical tunneling phenomenon
in the PT -symmetric system. Moreover, Fig. 5(b) shows
that very strong optical driving (the order of megawatts for
microcavity OMS) is required to obtain chaotic motion in

FIG. 4 (color online). Evolutions of (a) I1, I2, and (b) x in
PT BP, i.e., J ¼ 0.2γ. The optical and mechanical trajectories in
phase space are presented in the insets in (a) and (b). (c) The
optical trajectory corresponding to time interval (iii). The inset in
(c) presents the chaos dynamics in the long-time limit. The purple
arrow in (c) indicates the approximate evolution direction of
trajectory. The parameters are the same as Fig. 3.

FIG. 5 (color online). The evolutions of I1 and I2 in the passive-
passive system when (a) P ≈ 0.02 pW or Ωd ≈ 0.5γ and
(b) P ≈ 500 mW or Ωd ≈ 3 × 106γ. The insets present the
corresponding optical trajectories in phase space. The black
arrow indicates the approximate evolution direction of trajectory.
(c) The approximate starting time τ of chaotic motion versus
driving strength Ωd=γ in the active-passive system. The param-
eters are the same as Fig. 2 except for (a),(b) κ ¼ −0.8γ.
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the passive-passive system. The chaotic motion appears at
the beginning time and disappears with evolution due to the
optical loss. Accordingly, there is a transition from a
chaotic trajectory to a regular trajectory in phase space,
as shown in the insets in Fig. 5(b). Then, comparing
Fig. 4(a) with Fig. 5(b), one can see that the PT -
symmetry-breaking chaos is quite different from the normal
optomechanical chaos. (i) It emerges after going through
two distinguishable processes and lasts with evolution.
(ii) It allows an ultralow threshold (even is thresholdless);
i.e., in principle, it can be triggered once a nonzero-power
driving laser is employed and lasts for a period of time until
enough nonlinearity is reached. The driving strength only
resolves the starting time of chaotic motion, as shown in
Fig. 5(c). Strong optical driving makes the chaos arise more
quickly.
Conclusions.—We have investigated the nonlinear

dynamics of an OMS coupled to an active cavity, which
features a controllable PT -symmetry phase transition. We
showed that, by tuning the tunneling-to-loss or gain-to-loss
rate, we can obtain an optomechanical chaos induced by the
PT -symmetry breaking. Moreover, we also presented the
dynamical trajectories of a system in PT SP and PT BP,
respectively. The increasing optomechanical nonlinearity
with evolution in PT BP makes the chaos features an
ultralow threshold, which is required for many secret
communication schemes. This study provides a promising
route for controlling nonlinear dynamics, especially the
generation of chaos, with the concept of PT symmetry. It
opens up new avenues for the study of ultralow-power-
laser-triggered chaos. Conversely, it also offers a method to
distinguish the PT SP and PT BP via the experimentally
detectable optical spectrum.
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