
Axial Current Generation by P-Odd Domains in QCD Matter

Ioannis Iatrakis,1,* Shu Lin,2,† and Yi Yin3,‡
1Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

2RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
3Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

(Received 14 November 2014; published 23 June 2015)

The dynamics of topological domains which break parity (P) and charge-parity (CP) symmetry of QCD
are studied. We derive in a general setting that those local domains will generate an axial current and
quantify the strength of the induced axial current. Our findings are verified in a top-down holographic
model. The relation between the real time dynamics of those local domains and the chiral magnetic field is
also elucidated. We finally argue that such an induced axial current would be phenomenologically
important in a heavy-ion collisions experiment.
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Introduction.—One remarkable and intriguing feature
of non-Abelian gauge theories such as the gluonic sector
of quantum chromodynamics (QCD) is the existence of
topologically nontrivial configurations of gauge fields.
These configurations are associated with tunneling between
different states which are characterized by a topological
winding number:

QW ¼
Z

d4xq; q ¼ g2ϵμνρσ

32π2
trðGμνGρσÞ; ð1Þ

with Gμν the color field strength. While the amplitudes of
the transition between those topological states are expo-
nentially suppressed at zero temperature, such exponential
suppression might disappear at high temperature or high
density [1]. In particular, for hot QCD matter created in the
high energy heavy-ion collisions, there could be metastable
domains occupied by such a topological gauge field
configuration that violates parity(P) and charge-parity
(CP) locally. We will refer to those topological domains
as the “θ domain” in this Letter (see also Refs. [2] and
references therein for more discussion on the nature of the θ
domain).
Because of its deep connection to the fundamental

aspects of QCD, namely, the nature of P and CP violation,
with far-reaching impacts on other branches of physics, in
particular, cosmology, the search for possible manifestation
of those θ domains in heavy-ion collisions has attracted
much interest recently [3,4] (see also [5] for interesting
effects of P and CP violation in a related system). A θ
domain will generate chiral charge imbalance through the
axial anomaly relation

∂μJ
μ
A ¼ −2q: ð2Þ

Furthermore, the intriguing interplay between a Uð1Þ
triangle anomaly (in the electromagnetic sector) and chiral

charge imbalance would lead to novelP and CP odd effects
which provide promising mechanisms for the experimental
detection of θ domains. For example, a vector current
and, consequently, the vector charge separation will be
induced in the presence of a magnetic field and chiral
charge imbalance. Such an effect is referred to as the chiral
magnetic effect (CME) [6] (see Ref. [7] for a recent
review). In terms of chiral charge imbalance parametrized
by the axial chemical potential μA, the CME current is
given by jV ¼ ðNceBμAÞ=ð2π2Þ.
To decipher the nature of the θ domain through vector

charge separation effects such as CME, it is essential to
understand not only the distribution of such chiral charge
imbalance, but their dynamical evolution as well.
Previously, most studies were based on introducing chiral
asymmetry by hand, after which the equilibrium response
to a magnetic field (or vorticity) is investigated (see Ref. [8]
for the case in which the chirality is generated dynamically
due to a particular color flux tube configuration). In reality,
such as in a heavy-ion collisions experiment, however,
the chiral imbalance is dynamically generated through the
presence of the θ domain. In this Letter, we study the axial
current induced by inhomogeneity of the θ domain, which
can be conveniently described by introducing a space-time
dependent θ angle θðt; xÞ [cf. Refs. [3,9]]. One may
interpret θðt; xÞ as an effective axion field creating a θ
domain. We show that the presence of θðt; xÞ will not only
generate chiral charge imbalance, it will also lead to an
axial current (cf. Fig. 1):

jA ¼ κCS∇θðt; xÞ: ð3Þ

Such an axial current, to the best of our knowledge, has not
been considered in the literature so far.
As will be shown later, our results are valid as far as the

variation of θðt; xÞ in space is on the scale larger than 1=T
(or mean free path of the system), and the variation of
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θðt; xÞ in time is on the scale longer than the relaxation time
of the system, but shorter than the lifetime of the θ domain.
It is therefore independent of the microscopic details of
the system. While we are considering a system which is in
the deconfined phase of QCD, the resulting current bears a
close resemblance to that in the superfluid. One may
interpret the gradient ∇θðt; xÞ in Eq. (3) as the “velocity”
of the θ domain—similar to the case of the superfluid—that
the gradient of the phase of the condensate is related to
the superfluid velocity. Moreover, we will show that the
changing rate ∂tθðt; xÞ is related to the axial chemical
potential appearing in the chiral magnetic current, again
similar to the “Josephson-type equation” in the superfluid.
The relation between μA and ∂tθðt; xÞ is suggested in
Ref. [6]. We will show how such a connection is realized in
a nontrivial way.
The axial current in the presence of θðt; xÞ.—In this

section, we will derive Eq. (3) and the constitutive relation
of jμA in the presence of θðt; xÞ. The expectation value of
q induced by θ in Fourier space, is given by qðω; kÞ ¼
−Gqq

R ðω; kÞθðω; kÞ, where GR
qqðω; kÞ≡ −i

R
d4xe−ik·xþiωt

h½qðt; xÞ; qð0; 0Þ�iΘðtÞ is the retarded correlator of the
density of the topological charge density q. For ω;k≪T
(or inverse of the mean free path), one may expand
Gqq

R ðω; kÞ up to Oðω2; k2Þ:

Gqq
R ðω; kÞ ¼ −χTop þ

1

2

�
−i

ΓCS

T
ω − κCSk2 þ τCSω

2

�
: ð4Þ

Here the first term is the topological susceptibility. It is
highly suppressed in the deconfined phase, as indicated by
both lattice measurement and holographic calculation
[10,11]. We will ignore χTop from below. ΓCS in the second
term is the Chern-Simons diffusion rate and κCS and τCS
are new transport coefficients. Combining Eq. (4) and the
anomaly relation (2), we have in real space

∂μj
μ
A ¼ −2qðt; ~xÞ ¼

�
ΓCS

T
∂t þ κCS∇2

x − τCS∂2
t

�
θðt; xÞ:

ð5Þ
To proceed, we divide jμA into two parts: jμA ¼ jμA;anomþ
jμA;norm. Here, we require jμA;anom to satisfy the anomaly

equation, i.e., ∂μj
μ
A;anom ¼ −2q. Consequently, the remain-

ing part jμA;norm is conserved: ∂μj
μ
A;norm ¼ 0. In general, the

above division is not unique. However, if we further require
that jμA;anom to be local in θ, i.e., nA;anom; jA;anom must be
expressed in terms of θðt; xÞ and its gradients, jμanom
can then be determined uniquely from Eq. (5) as follows.
We start our analysis with jA;anom. By taking the static limit
of Eq. (5) and noting jA;anom transforms as a vector under
SOð3Þ spatial rotation, one finds that jA;anom have to be
expressed in a gradient of θ with the magnitude fixed by
Eq. (5):

jA;anom ¼ κCS∇θ þOð∂2Þ; ð6Þ

as was advertised earlier. Similarly, taking the homo-
geneous limit of Eq. (5) gives the zeroth component
of jμA;anom:

jtA;anom ¼ ΓCS

T
θ − τCS∂tθ þOð∂2Þ: ð7Þ

It is worth pointing out that κCS appearing in Eq. (4) is
accessible by the lattice. To see that, we note in the static
limit

GR
qqðω ¼ 0; kÞ ¼ −χTop −

1

2
κCSk2; k ¼ jkj: ð8Þ

It is related to the Euclidean correlator GE
qq by

GR
qqðω ¼ 0; kÞ ¼ −GE

qqðω ¼ 0; kÞ, which promises the
possibility of measuring κCS on the lattice through the
following Kubo formula:

κCS ¼ lim
k→0

d2

dk2
GE

qqðω ¼ 0; kÞ: ð9Þ

At zero temperature, κCS would coincide with the so-called
“zero-momentum slope” of the topological correlation
function and is of phenomenological relevance in con-
nection with the spin content of the proton (see Ref. [12]
and references therein). However, the importance of κCS in
the deconfined phase of QCD, to the best of our knowledge,
has not yet been appreciated. While χTop is highly sup-
pressed in the deconfined phase, there is no reason for the
suppression of κCS. Equation (6) gives an explicit example
where κCS is phenomenologically relevant.
Chiral charge imbalance, axial chemical potential μA,

and the real time dynamics of θ.—We are now ready to
quantify the chiral charge imbalance due to the presence of
θðt; xÞ. We concentrate on the first term on the right-hand
side of Eq. (7) and define the axial density generated by
θðt; xÞ as

nA;anomðt; xÞ≡ jtA;anomðt; xÞ ¼
ΓCS

T
θðt; xÞ þOð∂Þ: ð10Þ

FIG. 1 (color online). A schematic view of the axial current due
to the gradient of the effective axion field θðt; xÞ [cf. Eq. (3)].
Shaded areas illustrate θ domains (bubbles) with positive θ (red)
and negative θ (blue). The axial current flows from θ domains
with a smaller value of θ to those with a larger value.
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Equation (10) implies that a local θ domain(bubble) will
induce a local axial charge density. Further insight can be
obtained by looking at the axial chemical potential μA
corresponding to nA;anom in Eq. (10). Using the linearized
equation of state nA ¼ χμA, where χ is the susceptibility,
we have

μA ¼
�
ΓCS

χT

�
θ ¼ θ

2τsph
; ð11Þ

where we have introduced the sphaleron damping rate τsph,
which can be related to the Chern-Simons diffusion rate
ΓCS by the standard fluctuation-dissipation analysis [13]
(see also Ref. [14]): τsph ≡ ð2χTÞ=ΓCS. Equation (11)
relating μA and θ is new in the literature. It can be connected
to the argument of Ref. [6] in which μA is identified with
∂tθ. Equation (11) implies that due to dynamical effects,
one should replace ∂t in the identification μ ∼ ∂tθ with
1=τsph, the characteristic time scale of sphaleron damping.
The above analysis suggests that relation Eqs. (10), (11) have
already captured the real time dynamics of the effective
axion field θðt; xÞ, namely, the sphaleron damping.
Finally, let us briefly comment on the conserved part of

the axial current jμA;norm. Because of diffusion, we expect
from Eq. (10) that

jA;norm ¼ −D∇nA;anom ¼ −D
ΓCS

T
∇θ: ð12Þ

The conservation of the normal part determines the time
component as jtA;norm ¼ −

R
dt∇jA;norm. It depends on the

history of the normal part current, thus it is nonlocal in θ.
It is also higher order compared to jtA;anom. For positive κCS,
axial current induced by the θ domain (3) is opposite to the
diffusive current (12). We now argue that κCS is always
positive by noting that a nonzero θ will shift the action of
the system by Sθ ¼

R
d4xqθ. Using the expression for q in

Eq. (8), one finds that in the static limit, Sθ ¼ −ðkCS=2ÞR
d4xð∇θÞ2. Therefore, κCS might be interpreted as the

coefficient of the kinetic term of the “axion field” θ and
must be positive [15].
The holographic model.—The discussion above does not

rely on the microscopic details of the theory. We would like
to confirm our findings in a top-down holographic model,
namely, the Sakai-Sugimoto model [17,18], which at low
energy is dual to the four-dimensional SUðNcÞ Yang-Mills
theory with massless quarks in large Nc and strong
coupling. The deconfined phase of the field theory is dual
to the D4 black-brane metric, which is a warped product of
a 5d black hole and S1 × S4 [19,20]. For the present work,
we will consider field fluctuations with trivial dependence
on S1 × S4, thus, we only need the 5d black hole part of
the metric:

ds2 ¼
�
u
R

�3
2ð−fðuÞdt2 þ d~x2Þ þ

�
R
u

�3
2 du2

fðuÞ ; ð13Þ

where fðuÞ ¼ 1 − ðuH=uÞ3 and u is the holographic
coordinate with u ¼ ∞ the boundary and u ¼ uH the
horizon. uH are related to the temperature of the system
by 4πT ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
uH=R3

p
. The flavor degrees of freedom are

introduced by a pair of D8=D̄8 probe branes, separated
along the S1 direction [17]. The probe branes do not
backreact on the geometry.
We will compute axial density nA and axial current jA

along one particular spatial direction, say the “x” direction
in the presence of a source, θðt; xÞ. To this end, we consider
excitation of the axial gauge field AM of theD8=D̄8-branes,
with its field strength FMN ¼ ∂MAN − ∂NAM and the
Ramond-Ramond C1 form. The index M runs over
t; x; u and the rest of the components can be consistently

set to zero. The source θðt; xÞ is related to Cð4Þ
1 , the

component of C1 along S1 by 2πR4C
ð4Þ
1 ¼ θ, where R4

is the radius of S1. Following the holographic correspon-
dence, the axial current jμA is dual to the axial gauge field,

AM and the topological charge density q is dual to Cð4Þ
1 .

In the presence of AM, we consider instead components
of Ramond-Ramond C7 form (cf. Ref. [17]) BM.
The field strength of BM,GMN ¼ ∂MBN − ∂NBM, is related

to combination of AM;C
ð4Þ
1 by: ðN GÞ=ðuKÞϵLMN

ð2πR4∂LC
ð4Þ
1 þ 2ALÞ ¼ GMN by Hodge duality between

the C7 form and C1 form. Here, K ¼ 4π=3 and N G ¼
ð729πK3u2HÞ=ð4λ3T4R2

4Þ with λ the ’t Hooft coupling.
After integrating over S1 × S4 and noting fields depend

only on t; x; u, we obtain the effective action, which
contains the kinetic terms of FMN , GMN , and Wess-
Zumino coupling between FMN and BM [14]:

S ¼
Z

d4xdu
1

4

�
−N Fu5=2FMNFMN −

N G

u
GMNGMN

− 4KϵLMNBLFMN

�
; ð14Þ

In action (14), N F ¼ ð8Ncλ
2T3R4Þ=ð81u3HÞ; the indices in

Eq. (14) are raised by the 5d black hole part of the full
metric. The equations of motion following from Eq. (14)
are given by

∂MðGMN=uÞ ¼ K=ðN GÞϵNPQFPQ;

∂Mðu5=2FMNÞ ¼ K=ðN FÞϵNPQGPQ: ð15Þ

According to holographic correspondence, the one point
functions nA, jA are given by the functional derivative of
the gravity on-shell action with respect to the boundary
values of At, Ax. Using Eq. (15), we can then express nA, jA
in terms of Gtx, Ftx [21]:
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nA ¼ 2KiωGtx − ikðN Fu5=2f∂uFtxÞ
ω2 − k2f

����
u→∞

;

jA ¼ 2KikfGtx − iωðN Fu5=2f∂uFtxÞ
ω2 − k2f

����
u→∞

: ð16Þ

We now need to solve the bulk equation of motion for Gtx
and Ftx [see Eq. (18) and Eq. (19) below] with appropriate
boundary condition. We impose the infalling wave con-
dition at the black hole horizon. On the boundary, Gtx has
the following asymptotic expansion

Gtx ¼
K

2N G
ðω2 − k2Þθðω; kÞu2 þ � � � − qðω; kÞ

K
þ � � � :

ð17Þ

The u2 term is proportional to θ and the constant term
gives q. One could verify that Eqs. (16) and (17) indeed
reproduce the anomaly equation, ∂tnA þ ∂xjA ¼
2KGtxðu → ∞Þ ¼ −2q. We only keep the constant term
in near boundary expansion of Gtx in the limit. The
divergent terms should be removed by holographic renorm-
alization procedure: e.g., the ω2 − k2 factor in the leading
u2 term, which is completely determined by the near
boundary behavior of the bulk equation of motion, indi-
cates that it is a contact term that can be subtracted by
a boundary counterterm. In the case of nonconformal
backgrounds, such as the Witten-Sakai-Sugimoto bulk
space-time, the holographic renormalization procedure is
carefully described in Ref. [22]. On the other hand, Ftx is
not sourced on the boundary, thus we set Ftxðu → ∞Þ ¼ 0.
Note that K=N F ∼Oð1=NcÞ, K=N G ∼Oð1Þ, The back-
reaction of Ftx to Gtx is 1=Nc suppressed. Keeping the
leading contribution in Nc, we find the following equations
of motion for Gtx and Ftx from action (14):

�
∂u

�
f

uðω2 − k2fÞ ∂u

�
−

R3

u4f

�
Gtx ¼ 0; ð18Þ

�
∂u

�
u5=2f

ω2 − k2f
∂u

�
−

R3

u1=2f

�
Ftx

¼ 2K
k
ω
∂u

�
f

ω2 − k2f

�
Gtx: ð19Þ

Results of the holographic calculation.—We are inter-
ested in the solutions to Eq. (18) and Eq. (19) in the
hydrodynamic regime, i.e., ω; k ≪ 1=T. They can be found
analytically, order by order in ðω=T; k=TÞ, following the
standard procedure in the literature (cf. Refs. [23,24]).
The full expressions and details of the calculations are
straightforward but lengthy and will be reported in a
forthcoming paper [14]. In order to compute nA, jA, we
only need their near-boundary expansions:

Gtx ¼
K

2N G
ðω2 − k2Þθu2 þ Ku2Hθ

N G

�
−iω

�
uH
R3

�
1=2

þ 1

2
ðω2 − k2Þ − c0ω2

�
; ð20Þ

Ftx ¼ −
4K2u2Hkθ

3N GN Fu3=2

�
−i
�
uH
R3

�
1=2

þ 2ðω2 − k2Þ
3ω

− c0ω

�
;

ð21Þ

where c0 ¼ ð ffiffiffi
3

p
π þ 3 ln 3Þ=18. From Eq. (20), we

immediately read q by using Eq. (17). Further comparison
with Eq. (5) gives ΓCS, κCS in the Sakai-Sugimoto
model [25]:

ΓCS ¼
2u2HK

3T2

N G
¼ 8λ3T6

729πM2
KK

; κCS ¼
3ΓCS

8πT2
; ð22Þ

where MKK ¼ 1=R4 is the mas gap of the theory. Now
plugging Eq. (20) and Eq. (21) into Eqs. (16), we recover
the time component of the axial current in Eq. (10) and the
spatial component as a sum of Eq. (6) and (12):

nA ¼ ΓCS

T
θ; jA ¼ −ik

�
D
ΓCS

T
− κCS

�
θ; ð23Þ

where the diffusion constant D ¼ 1=ð2πTÞ in the Sakai-
Sugimoto model [27].
Phenomenological implication in heavy-ion collisions.—

In this Letter, we found a new mechanism for generating
axial current (3) due to the inhomogeneity of effective θ
domains. We now estimate its magnitude in a hot quark-
gluon plasma (QGP) and examine its phenomenological
importance in heavy-ion collisions. We start by relating θ to
μA using Eq. (11). In terms of Lθ, the characteristic size of a
θ domain, Eq. (3), can be then estimated as

jA;θ ∼ ðμAκCSÞ
�
τsph
Lθ

�
∼ ðμAT2Þ

�
τsph
Lθ

�
; ð24Þ

where in the last step we have taken our holographic results
(22), which implies κCS ∼ T2 as a crude estimate of κCS in
QCD plasma.
We now compare Eq. (24) to axial current from other

sources. For QGP in the presence of magnetic field, axial
current can be generated by chiral charge separation effects
(CCSE) [28]. Similar to CME, the CCSE current is given
by jA;CCSE ¼ ðNcμVeBÞ=ð2π2Þ. In top energy collisions at
relativistic heavy ion collider, eB at the early stage is of a
few m2

π and, consequently, Nce2B=2π2 is at most the same
order as T2. Moreover, in those collisions, most of μV (or
μB) is generated from fluctuations and is expected to be of
the same order as μA. We therefore conclude that axial
current is at least comparable to CCSE current if
τsph=Lθ ∼Oð1Þ, but could be larger if Lθ < τsph. A similar
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argument also applies to the comparison to the chiral
electric separation effect [29].
The axial current (3) studied in this work is induced by

topological fluctuation. In plasma with chiral charge, axial
charge can also be generated by thermal fluctuation, which
is nontopological. Axial current can also exist as diffusion
of such a charge. Assuming the corresponding μA is the
same order as the one from topological fluctuation, we can
estimate the current as

jA ¼ −D∇nA ∼Dχ
μA
L

∼ T
μA
L
; ð25Þ

where L is the mean free path of fermions and we have
taken D ∼ 1=T and χ ∼ T2. Comparing with Eq. (24), we
conclude if the θ domain parameter τsph=Lθ is larger than
T=L, the current (3) would dominate over the axial current
generated by thermal diffusion.
To sum up, if the condition τsph=Lθ ≳ 1, τsph=Lθ ≳ T=L

is achieved in heavy-ion collisions, the new current (3)
proposed in this Letter would become phenomenologically
important.
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