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Soon after the discovery of the Kerr metric, Penrose realized that superradiance can be exploited to
extract energy from black holes. The original idea (involving the breakup of a single particle) yields only
modest energy gains. A variant of the Penrose process consists of particle collisions in the ergoregion.
The collisional Penrose process has been explored recently in the context of dark matter searches, with
the conclusion that the ratio η between the energy of postcollision particles detected at infinity and the
energy of the colliding particles should be modest (η≲ 1.5). Schnittman [Phys. Rev. Lett. 113, 261102
(2014)] has shown that these studies underestimated the maximum efficiency by about 1 order of
magnitude (i.e., η≲ 15). In this work we show that particle collisions in the vicinity of rapidly rotating
black holes can produce high-energy ejecta and result in high efficiencies under much more generic
conditions. The astrophysical likelihood of these events deserves further scrutiny, but our study hints at the
tantalizing possibility that the collisional Penrose process may power gamma rays and ultrahigh-energy
cosmic rays.
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Introduction.—It is tempting to say that modern relativ-
istic astrophysics was born in 1963, when Kerr discovered
the famous solution of Einstein’s equations describing
rotating black holes [1] and Schmidt identified the first
quasar [2]. The connection between these theoretical and
observational breakthroughs became clear much later, but
astronomers now agree that black holes are the engines
behind many high-energy events in the Universe. Black
holes are the most compact objects in nature, and therefore
particles in their vicinities can attain relativistic velocities,
producing observable phenomena such as jets and gamma-
ray bursts. The mechanisms converting the gravitational
energy stored by black holes into high-energy fluxes of
matter and radiation are a major area of investigation in
relativistic astrophysics, and particle collisions near black
holes could have important implications for dark matter
searches (see, e.g., Refs. [3,4]).
In 1969, Penrose discovered a remarkable way to

extract energy from Kerr black holes [5]. In the so-called
“ergoregion” surrounding rotating black holes particles
can have negative energies ðϵi < 0Þ as measured by an
observer at infinity. Therefore, an object of energy ϵ0
can fragment into two pieces, one of which escapes to
infinity with energy ϵ3, while the other is absorbed at
the horizon with energy ϵ4 < 0 (the reason for the odd
choice of subscripts will be clear soon). This results in
ϵ3 ¼ ϵ0 − ϵ4 > ϵ0, a net energy gain at the expense of the
rotational energy of the hole. Unfortunately, this process
yields a modest efficiency ϵ3=ϵ0 ≤ ð1þ ffiffiffi

2
p Þ=2≃ 1.207,

where the maximum is achieved for disintegration into
two massless particles [6–9].

The original Penrose process relies on the somewhat
unrealistic disintegration of a single particle. An astrophysi-
cally more promising variant of the idea is the collisional
Penrose process [8]: two bodies with energy ðϵ1; ϵ2Þ—
which could be elementary particles—collide resulting in
two bodies with energy ðϵ3; ϵ4Þ. This process has recently
attracted interest in connection with dark matter searches
as a result of work by Banados, Silk, and West [10], who
found that particle collisions near rapidly rotating black
holes could yield (in principle) unbound center-of-mass
energies, perhaps producing observable exotic ejecta (see
also Refs. [9,11,12] for caveats, and [13] for a review).
A crucial issue is that the highest center-of-mass energies
are achieved close to the horizon, and therefore the
collision products experience large gravitational redshifts,
resulting in modest efficiencies

η≡ ϵ3
ϵ1 þ ϵ2

ð1Þ

for the escaping particle (that we will assume, without
loss of generality, to be particle 3); η≲ 1.5, where the
precise upper bound depends on the nature of the colliding
particles [9,14,15].
Surprisingly, Schnittman [16] recently reported an

order-of-magnitude increase in the efficiencies (η≲ 15)
by allowing for a small kinematic change in the collision,
illustrated schematically in Fig. 1. One of the colliding
particles (say, particle 1) falls in the effective potential for
radial motion around an extremal black hole, defined in
Eq. (2) below and depicted by a dash-dotted (blue online)
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curve in Fig. 1. Particle 1 rebounds at the turning point
r ¼ rt, so it has outgoing radial momentum (pr

1 > 0) when
it collides (at some radius r0 such that rt < r0 < rergo) with
incoming particle 2. This outgoing momentum favors
ejection of high-energy particle 3 after the collision.
In this Letter we confirm the results of Ref. [16], and we

reach the striking conclusion that arbitrarily large efficien-
cies can be achieved when we do not require both of the
colliding particles to fall into the black hole from infinity.
In our “super-Penrose” processes outgoing particle 1 has
angular momentum below the critical value for escape
(corresponding to the solid black line in Fig. 1) when it
collides with ingoing particle 2. The radial motion of
particle 1 is determined by the dashed (red online) effective
potential: particle 1 is confined to the vicinity of the black
hole, and it must have been created in the ergoregion via
previous scattering events (see Ref. [17] for a similar
proposal). The likelihood of such multiple scatterings is
a delicate matter to be resolved by detailed cross-section
calculations for specific processes, but we demonstrate that
there is nothing preventing the creation of such particles
in the ergosphere: our super-Penrose collisions are at
least kinematically allowed. From now on we will use
geometrical units (G ¼ c ¼ 1).
Setup.—Our setup is similar to that of Ref. [16]. We

consider two bodies (or particles) 1 and 2 colliding with
four-momenta pμ

1 and p
μ
2 at the Boyer-Lindquist coordinate

position r ¼ r0 in the equatorial plane (θ ¼ π=2) of a Kerr
black hole. The final state consists of two bodies 3 and 4
with four-momenta pμ

3 and pμ
4, also moving in the equa-

torial plane. In Boyer-Lindquist coordinates, the geodesic
equations for equatorial particles with rest mass m, energy

ϵ≡ −gtμpμ, and angular momentum l≡ gφμpμ (as seen by
an observer at infinity) are given by

_r2 ¼ r3 þ a2ðrþ 2MÞ
r3

ðE − VþÞðE − V−Þ;

V� ¼ 2aLM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rΔ½L2rþ ðr3 þ a2ðrþ 2MÞÞδ�

p
r3 þ a2ðrþ 2MÞ ;

_ϑ ¼ 0;

_φ ¼ 1

Δ

��
1 −

2M
r

�
Lþ 2aM

r
E

�
; ð2Þ

where the dot denotes differentiation with respect to the
geodesic affine parameter λ and Δ ¼ r2 − 2Mrþ a2. Here,
E≡ ϵ=m and L≡ l=m denote the energy and angular
momentum per unit mass for massive particles, while for
massless particles this distinction does not apply (E ¼ ϵ
and L ¼ l). The constant δ ¼ 1ð0Þ for massive (massless)
particles, respectively. For massless particles the four-
momentum is pμ ¼ _xμ; for massive particles we can choose
λ ¼ τ=m (τ being proper time), so that pμpμ ¼ −m2. To
enforce causality and guarantee that the locally measured
energy is always positive, physical geodesics must satisfy
_t > 0.
Local conservation of four-momentum implies

pμ
1 þ pμ

2 ¼ pμ
3 þ pμ

4: ð3Þ

Using Eqs. (2), this condition can be written as a set of three
equations:

ϵ1 þ ϵ2 ¼ ϵ3 þ ϵ4; ð4Þ

l1 þ l2 ¼ l3 þ l4; ð5Þ

pr
1 þ pr

2 ¼ pr
3 þ pr

4: ð6Þ

The initial state is completely specified by fixing E1;2 and
L1;2 (and m1;2 for massive particles). For massive particles,
we can specify the final state by providing a relation
betweenm3 andm4: for example, for two identical collision
products we can set m4 ¼ m3. Finally, we provide the
Lorentz boost E4 and specific angular momentum L4 and
we are left with three unknowns ðm3; E3; L3Þ that can be
determined by solving Eqs. (4)–(6). To be observationally
interesting, the solutions of the system above must satisfy
the requirement that particle 3 can escape and reach an
observer at infinity (i.e., there cannot be any turning points
rt3 for particle 3 with rt3 > r0). To find the maximum
efficiency ηmax, we simply repeat the previous procedure for
a range of values of L4. We find that the efficiency only
depends on the impact parameters of the initial particles
b1;2 ≡ L1;2=E1;2 and on the ratio of their energies
R≡ ϵ1=ϵ2. Therefore, all of our results will be shown as
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FIG. 1 (color online). Effective radial potential Vþ [cf. Eq. (2)]
for an extremal black hole and a particle with energy E1 ¼ 1 and
angular momentum L1 ¼ b1E1. The horizon is located at r ¼ 1,
and the ergoregion corresponds to r < rergo ¼ 2. The dash-dotted
(blue online) curve shows the potential felt by particle 1 for the
process discussed in Ref. [16]; particle 1 cannot access the dashed
(blue online) region with r < rt. The dashed (red online) curve
corresponds to the process considered in this Letter. The solid
(black online) curve depicts the potential for the critical value of
b1 separating these two processes.
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functions of these quantities. For simplicity, we will also set
the black-hole mass M ¼ 1.
Superamplification collisions.—We focus on collisions

for which particle 1 is outgoing (i.e., pr
1 > 0) while particle

2 is ingoing. Our results are summarized in Figs. 2–5. We
start by using the same initial conditions as in Ref. [16]: an
extremal black hole and E1 ¼ E2. For b1 ¼ 2 we confirm
that in this case the peak efficiency is ηmax ∼ 6.4 (a value
sensibly larger than the predictions of previous studies
[13–15]) for collisions that occur close enough to the
horizon. In Fig. 2 we show the maximum efficiency,
varying b1 close to the critical value b1 ¼ 2 and fixing
the impact parameter of particle 2 to the value b2 ¼
−2ð1þ ffiffiffi

2
p Þ. We find that the maximum efficiency quickly

decreases with increasing b1, because particle 1 is now
allowed to move in a smaller region inside the ergosphere
(see Fig. 1). For subcritical particles (b1 < 2) the scenario is
completely different, and the efficiency becomes arbitrarily
large as we approach the horizon. In our searches we found
that these super-Penrose collisions occur for b2 < b1 < 2.
Figure 3 shows that the efficiencies of super-Penrose

collisions can be orders of magnitude larger than those
found in Ref. [16] in a large region of the parameter space
of initial conditions. For very large ðjb1j; jb2jÞ and colli-
sions close to r ¼ rþ, the peak efficiency scales as
ηmax∼0.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2−b1Þð2−b2Þ
p

=ðr0−rþÞ. Efficiencies η≳103

are easily achieved for maximally spinning black holes.
Figure 4 shows the dependence of the superamplification

efficiency on the black-hole spin a. For a < 1 the maxi-
mum gain quickly drops (bottom panel), and particle 3 can
only escape for collisions occurring at r0 > rc, where rc
(Fig. 4, top panel) is the Boyer-Lindquist radius of the
photon sphere in the equatorial plane. The maximum
efficiency is attained when the collision occurs precisely
at the photon sphere, where we find the scaling
ηmax ∼ ð1 − a2Þ−1=2. Nonetheless, very high efficiencies

are still allowed for astrophysically relevant black holes,
as long as particles with large negative impact parameters
b1 and b2 are created inside the ergosphere and collide. For
collisions where particle 2 falls from spatial infinity and
black holes spinning at the Thorne limit a ∼ 0.998 [18] we
still find efficiencies as large as η ∼ 102.
Finally, in Fig. 5 we consider the Compton-like scatter-

ing of a massless particle with pr
1 > 0 and a massive

particle with pr
2 < 0 and we show the dependence of the

maximum efficiency on the energy ratio R≡ ϵ1=ϵ2 of the
initial particles. For reactions occurring near the edge of
the ergoregion the efficiency is largest when R ¼ 1, while
near the horizon (r=rþ − 1 ≪ 1) the maximum efficiency is
achieved for R ≈ 10. By comparing the solid (blue online)
and dash-dash-dotted (green online) curves, we see that the
maximum efficiency at the horizon occurs for 1 < R≲ 50,
and for R≳ 50 the efficiency decreases again. In conclusion,
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reactions such as the inverse Compton scattering between
photons and massive particles could (at least in principle)
produce highly energetic photons by multiple scattering
processes.
The origin of the colliding particles.—Super-Penrose

amplification cannot result from the collision of two
particles coming from spatial infinity: as shown schemati-
cally in Fig. 1, particle 1 (with pr

1 > 0 and b1 < 2 for
a ¼ 1) must be created inside the ergosphere by previous
scattering events. Furthermore, for b1;2 < −2ð1þ ffiffiffi

2
p Þ

there are turning points of the motion outside the ergo-
region, and particles would be deflected back before
reaching the ergoregion (cf. Fig. 1 of Ref. [16]).
The colliding particles giving rise to superamplification

are physically relevant initial states, because they can be
created (for example) by the collision of particles coming
from infinity. In fact, there is a wide range of realistic initial
conditions that can result in super-Penrose initial condi-
tions. For example, a particle with E1 ¼ 1; m1 ¼ 1, and
L1 ¼ 1.9 (dotted blue line in Fig. 3) in the extremal Kerr
background can be generated by two particles with rest
masses ð1; m�Þ falling from rest at infinity with angular
momenta ðL1 ¼ −4; L2 ¼ 2Þ and colliding at r ¼ 1.01, as
long as m� > 6. The threshold mass ratio m� depends on
the angular momentum of the colliding particles and on the
spin of the black hole: it is proportional to jL1j, and it scales
like ðr − 1Þ−2 for extremal black holes. Note in particular
that we can have super-Penrose collisions for arbitrarily
large negative angular momenta of particle 2. Because of
frame dragging, the cross section for counterrotating
incoming particles is much larger. Counterrotation may
be a common feature in astrophysics, e.g., because of
disk fragmentation, as in the “chaotic accretion” scenario
[19,20]. Finally, we could (very conservatively) define a
combined efficiency η0 so that ϵ1;2 in Eq. (1) refers to the
“parent” particles falling from infinity. With this redefini-
tion, the maximum efficiency typically seems to lower to
the levels predicted in Ref. [16] (see below).

In summary, the initial conditions giving rise to super-
amplification are kinematically allowed as the result of
collisions of particles falling into the hole from large
distances.
Multiple scattering.—A consequence of the argument

presented above is that multiple scattering events can
increase the energetic gain achievable with (and the
astrophysical relevance of) the “traditional” collisional
Penrose process [8–10] and of Schnittman’s variant of
the process [16]. This is because the energy of particles that
cannot escape to infinity may be substantially larger than
the energy of those that can. Even if “trapped” and unable
to escape themselves, these particles may collide with other
particles and give rise to high-energy collision products that
may escape and be detectable.
Multiple energy-extracting collisions may lead to very

large efficiencies [16]. Each Penrose scattering decreases
the black-hole spin, but efficiencies can still be moderately
high, even away from a ¼ 1. These events may well
be rare, but it is tempting to propose that they could play
a role in the production of observable gamma rays or
ultrahigh-energy cosmic rays. A detailed assessment of
these possibilities is beyond the scope of this Letter.
Discussion.—Previous studies [9,14–16] (which we

reproduced) focused on a region of the parameter space
that excludes by construction the amplification mecha-
nism studied in our work. The astrophysical likelihood of
the super-Penrose amplification process proposed here is
obviously a critical issue that requires further work. For
very large efficiencies, the energy of the escaping particle
can be as large as the black hole’s, and our geodesic
approximation clearly breaks down. In this regime back-
reaction effects must be included. Furthermore, numerical
simulations and detailed calculations of production rates
(along the lines of Refs. [9,21,22]) are needed to make
conclusive statements about the astrophysical relevance
of these results.
We made the simplifying assumption that the reaction

occurs in the equatorial plane. Very few off-equatorial
calculations of the Penrose process have been performed
in the past, mainly due to computational difficulties.
The results reported here, together with recent studies
of the off-equatorial collisional Penrose process [23,24],
suggest that surprises may be in store, and a generalization
of our calculations to the off-equatorial case is urgently
needed.
Another important extension of our work would be the

inclusion of external magnetic fields, a common feature of
astrophysical black holes. The Penrose process for charged
particles in the presence of electromagnetic fields is
known to be more efficient than the original process [25],
with efficiencies as large as η ∼ 10 [26]. The possibility that
electromagnetic fields could trigger and enhance super-
Penrose collisions makes this an important line of research
for the future.
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We hope that this Letter will stimulate further work in
these directions and improve our understanding of some
of the most energetic events in the Universe.
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