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We investigate the trade-off between information gain and disturbance for von Neumann measurements
on spin-1

2
particles, and derive the measurement pointer state that saturates this trade-off, which turns out to

be highly unusual. We apply this result to the question of whether the nonlocality of a single particle from
an entangled pair can be shared among multiple observers that act sequentially and independently of each
other, and show that an arbitrarily long sequence of such observers can all violate the Clauser-Horne-
Shimony-Holt–Bell inequality.
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Introduction.—A central paradigm in quantum theory is
that measurements are necessarily disturbing—in order to
probe the properties of a system one must perturb it [1]. The
measurement postulate [2] states that performing what is
referred to as a “strong” measurement collapses the system
into one of the eigenstates of the measured observable; this
type of measurement offers the maximum information
about the system.
On the other hand, there exist measurement schemes that

disturb the system infinitesimally, offering only a small
amount of information about the state. Such “weak”
measurements are often considered in conjunction with
postselection [3], a formalism that has precipitated the
study of weak values [4]. Of course, these measurements
are important by themselves, even without postselection.
Indeed, all macroscopic measurements are weak measure-
ments [5,6].
Here we consider measurements of all intermediate

strengths focusing on the trade-off between the degree of
disturbance and the amount of information we gain about
the system. This trade-off has been explored extensively,
both in the context of specific measuring devices [7,8] and
abstract measurement representations [9–12].
The subject of our investigation is the von Neumann–

type measurement, which is characterized by the pointer of
the measuring device being displaced proportionally to the
value of the measured observable. This offers arguably the
most direct connection between the measured physical
quantity and the reading of the measuring device. We are
interested in deriving the optimal measurements, i.e., those
that maximize the information gain for a given disturbance
to the system.
In this Letter, we consider the case of dichotomic

measurements on spin-1
2
particles.

The information gain and disturbance can be modified
by changing the initial state of the pointer as well as the
strength of the coupling between the system and the

measuring device. However, the optimal information gain
vs disturbance trade-off cannot be achieved by only tuning
the coupling strength (which is equivalent to rescaling the
state of the pointer). Rather the initial state of the pointer
must be appropriately chosen. We determine the optimal
pointer state, and find it to be very counterintuitive. In
particular, it is nothing like the Gaussian wave packet that is
almost universally considered and considerably outper-
forms it.
We then use a simple bipartite scenario involving

successive measurements to find a constraint on the
trade-off, in a similar vein to those derived in [10,12].
The trade-off attained by the optimal pointer saturates this
constraint.
Since von Neumann measurements are, on the one hand

rich enough to allow us to tune this trade-off, and on the
other hand simple enough to allow manageable calcula-
tions, they enable us to raise and answer a new fundamental
question in nonlocality: can the nonlocality of an entangled
pair of particles be distributed among multiple observers,
that act sequentially and independently of each other? We
consider the scenario that a single observer has access to
one of the particles of an entangled pair, and a group of
observers have access to the second particle. Each observer
in the second group acts independently, performing a
measurement on the particle before passing it on to the
next member of the group. We address the question of
whether the single observer with the first particle can see
nonlocal correlations with all of the members in the
second group.
Crucially, we find that each member in the second group

cannot perform a very weak measurement, since this is
unable to extract enough information to observe nonlocal
correlations. Hence the state is disturbed significantly, and
it is not clear that subsequent observers can still observe
nonlocal correlations. Nevertheless, we show that an
arbitrary number of independent observers can indeed
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see consecutive violations of the CHSH (Clauser-Horne-
Shimony-Holt)-Bell inequality. As well as teaching us
about the nature of nonlocality, this problem illuminates
the nature of the information gain vs disturbance trade-off.
von Neumann measurement pointers for spin-1

2
particles.—In a von Neumann–type measurement, the
pointer is shifted proportional to the eigenvalues of the
measured observable

jΨi ⊗ jφðqÞi ⟶
X
a

hajΨi · jai ⊗ jφðq − g0aÞi; ð1Þ

where Ψ and φðqÞ are the initial states of the system and
pointer, respectively, the index a refers to the eigenbasis of
the observable, q is the position of the pointer, and g0 is a
coupling constant. The outcome of the measurement is then
provided by reading the position of the pointer.
The evolution (1) is generated by the interaction

Hamiltonian HðtÞ ¼ gðtÞA ⊗ p, where A is the measured
observable, p is the momentum operator of the pointer
conjugate to q, and gðtÞ is nonzero only during a short time
interval and normalized so that

R
gðtÞdt ¼ g0. Here, we

take g0 ¼ 1, which can be done without loss of generality
by simply rescaling the pointer state [13].
In a strong measurement the pointer’s initial state is

narrower than the distance between the eigenvalues, i.e.,
hφðq − aÞjφðq − a0Þi ¼ δaa0 ; hence, reading the pointer’s
position provides full information of the measured physical
quantity and collapses the system into the corresponding
eigenstate of the observable.
Conversely, if the pointer spread is very large, covering

the entire spectrum of eigenvalues, reading the pointer
position provides essentially no information since
hφðq − aÞjφðq − a0Þi ≈ 1 and the system is not perturbed,

jΨ0ijq0 ¼
X
a

hajΨihq0jφðq − aÞijai

≈ hq0jφðqÞi
X
a

hajΨijai ¼ hq0jφðqÞijΨi: ð2Þ

This is the limit of a weak measurement.
We now consider measurements in between the two

extremes. Focusing on spin-1
2
particles, the initial state of

the spin in the eigenbasis of the measured observable is
jΨi ¼ αj↑i þ βj↓i, hence

jΨi ⊗ jφðqÞi ⟶ αj↑i⊗ jφðq− 1Þi þ βj↓i⊗ jφðqþ 1Þi:
ð3Þ

For simplicity, we consider pointer states with symmetric
modulus, i.e., jφðqÞj ¼ jφð−qÞj. We also take φðqÞ to be
real valued, without loss of generality, since complex
pointers are shown not to outperform real ones (see the
Supplemental Material [14], Part B).

To determine the disturbance produced by the measure-
ment, we compute the system postmeasurement state by
tracing out the pointer (see [14], Part A)

ρ0 ¼ FjΨihΨj þ ð1 − FÞðπþjΨihΨjπþ þ π−jΨihΨjπ−Þ;
ð4Þ

where πþ ¼ j↑ih↑j and π− ¼ j↓ih↓j. The quantity F is
independent of the state of the spin, and is the scalar
product of the displaced pointer states,

F ¼
Z þ∞

−∞
φðqþ 1Þφðq − 1Þdq: ð5Þ

We call F the “quality factor” of the measurement since
it is the proportion of the postmeasurement state that
corresponds to the original state. The remainder corre-
sponds to the state decohered in the measurement eigen-
basis, as it would have been if measured strongly.
The other quantity of interest is the information gain.

Since we are measuring a dichotomic observable, we digitize
the reading of the pointer, associating positive positions to
the outcomeþ1 and negative positions to−1 (see discussion
in the Supplemental Material [14], Part C). The probability
of the outcomes �1 is then (see [14], Part A)

Pð�1Þ ¼ GhΨjπ�jΨi þ ð1 − GÞ 1
2
: ð6Þ

G is also independent of the state of the spin, and
depends on the width of the pointer compared to the
distance between the eigenvalues,

G ¼
Z þ1

−1
φ2ðqÞdq: ð7Þ

The first term in (6) represents the contribution of the
probability as if there was a strong measurement, so we call
G the precision of the measurement. The other term,
ð1 −GÞ 1

2
, corresponds to a random outcome.

Consider, for example, the simple case of a square
pointer state: φðqÞ ¼ 1=ð ffiffiffiffiffiffi

2Δ
p Þ for −Δ < q < þΔ and

zero elsewhere. If the spread Δ is smaller than 1, then
reading the pointer’s position provides full information of
the measured spin; i.e., Δ ≤ 1 corresponds to a strong
measurement: F ¼ 0, G ¼ 1. When Δ > 1, we find that
G ¼ 1 − F. Hence square pointers correspond to measur-
ing strongly with probability G and producing a random
result, without measuring, with probability 1 −G.
However, square pointers are far from optimal: Gaussian

wave packets achieve a better trade-off between F and G
(see Fig. 1), but are still not optimal.
Optimal pointers.—Since F and G are solely functionals

of the pointer state it is natural to look for the one that
achieves the best trade-off by using variational calculus (see
the Supplemental Material [14], Part B).
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Interestingly, we find that for any quality factor F, there
is an entire family of optimal pointer states that achieve the
maximum precision G. Each element of this family is
defined by the choice of an arbitrary function fðqÞ in the
interval −1 < q < þ1 such that the norm of the pointer
state within this interval is the precisionG (7). The function
is then copied to all other regions between adjacent odd
points q ¼ 2n − 1 and q ¼ 2nþ 1 with the relative height
of the function in each region falling under an exponential
envelope that depends on G,

φðqÞ ¼ fðq − 2nÞ
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 −G
1þG

r �jnj

∀q ∈ ð2n − 1; 2nþ 1�; n ∈ Z: ð8Þ

Two such optimal pointer states are plotted in Fig. 2, along
with the trade-off compared to that of Gaussian pointers.
For an optimal pointer state, the trade-off is given by

F2 þG2 ¼ 1: ð9Þ

A bound on the disturbance-precision trade-off.—
Interestingly, the above trade-off (9) can also be deduced
from a simple Bell-inequality–type scenario (Fig. 3). Alice

and Bob each possess one-half of a singlet state of spin-1
2

particles. Alice receives a binary input x ∈ f0; 1g, and
performs a strong projective measurement of her spin
along a corresponding direction ūx; we label her outcome
a ¼ �1. Bob receives two consecutive binary inputs
y1; y2 ∈ f0; 1g, and performs two consecutive spin mea-
surements along corresponding directions w̄y1 and v̄y2 ; his
outputs are labeled b1 and b2 (�1). Bob’s first measure-
ment has intermediate strength, while his second is a strong
measurement.
Such a scenario is characterized by the conditional

probabilities of the outcomes, Pðab1b2jxy1y2Þ. To calcu-
late these, we require the state of Bob’s spin after his first
measurement of intermediate strength. This is different
from the state in Eq. (4), since here we require the
postmeasurement state given the specific outcome b1,
and thus trace only over either positive or negative pointer
positions, respectively.
We find that the outcome dependent state of the spin-1

2
particle is dependent on both the quality factor F and
precision G of the measurement

ρ0jb1 ¼
F
2
ρþ

�
1þ b1G − F

2

�
πþρπþ

þ
�
1 − b1G − F

2

�
π−ρπ−; ð10Þ

where πþ and π− denote the projectors of the spin
measurement, ρ is the premeasurement state, and ρ0jb1 is

the unnormalized postmeasurement state of the system
given the outcome b1. From this state, one arrives at the
conditional probability (see the Supplemental Material
[14], part D),

Pðab1b2jxy1y2Þ ¼
b1G
4

�
aūx · w̄y1 þ b2w̄y1 · v̄y2

2

�

þ F
4

�
1þ ab2ūx · v̄y2

2

�

þ
�
1 − F
4

��
1þ ab2ūx · w̄y1w̄y1 · v̄y2

2

�
;

ð11Þ

FIG. 2. Plot of two optimal pointer distributions, fG ¼
0.8; F ¼ 0.6g (solid) and fG ¼ 0.2; F ¼ 0.98g (dashed). Inset:
Comparison of the optimal trade-off (dashed) to that attained by
the Gaussian pointer (solid).

FIG. 3 (color online). Bell scenario involving a single Alice and
multiple Bobs, where the dashed lines indicate a spin-1

2
particle

being transmitted, and the solid lines the inputs and outputs.

FIG. 1. Square (solid line) and Gaussian (dashed line) pointers
of equal width Δ ¼ 1.5 with (inset) the corresponding trade-off
between the precision G and quality factor F.
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which is nonsignaling between Alice and Bob, as expected.
Furthermore, being a probability, it must lie between 0

and 1. Choosing the measurement directions to be ū0 ¼ Z̄,
w̄0 ¼ −X̄, and v̄0 ¼ Z̄ sin θ − X̄ cos θ (where Z̄ and X̄ are
two orthogonal directions in space), along with the
outcomes a ¼ b1 ¼ b2 ¼ 1, we obtain the inequality
Pð111j000Þ ¼ F sin θ þ G cos θ ≤ 1. This is the expres-
sion of a tangent to the unit circle F2 þG2 ¼ 1, at the point
fsin θ; cos θg. Varying over θ, we obtain all of the tangents
to the unit circle as constraints on the pair fF;Gg, and thus
the pair must lie within the unit circle. The optimal pointer
(described above) saturates this constraint.
Using such a Bell scenario to examine the trade-off is a

natural method to study weak measurements in generalized
probability theories, where one can expect the optimal
trade-off to differ from the quantum trade-off.
Consecutive violations of the CHSH-Bell inequality.—

Armed with an understanding of the trade-off between
information gain and disturbance, we now raise a novel and
fundamental question in nonlocality—can multiple observ-
ers share the nonlocality present in a single particle from an
entangled pair? To answer this question, we consider the
Bell scenario in Fig. 3, where Alice has one-half of an
entangled pair of spin-1

2
particles, but instead of a single

Bob performing two consecutive measurements, there are
two Bobs that each perform a measurement one after the
other on the second particle of the pair. The Bobs are
independent; i.e., Bob2 is ignorant of the direction that
Bob1 measures his spin in as well as the outcome of his
measurement.
We investigate whether the statistics of the measure-

ments of Bob1 and Bob2 can both be nonlocal with Alice by
testing the conditional probabilities Pðab1jxy1Þ and
Pðab2jxy2Þ against the CHSH inequality [15].
At first one may think it impossible to have simultaneous

violations Alice-Bob1 and Alice-Bob2 because of the
monogamy of entanglement [16] and of nonlocality
[17,18]. However, these results assume no-signaling
between all parties, while in our scenario Bob1 implicitly
signals to Bob2 by his choice of measurement on the state
before he passes it on. Hence, no monogamy argument
holds, and one has to look more closely at the situation.
An unusual feature of this Bell scenario is that Bob2’s

CHSH value depends on the input bias of Bob1, i.e., the
frequency with which Bob1 received the input 0 versus the
input 1. Even though the CHSH expression contains only
conditional probabilities, the state that Bob2 measures has
been perturbed by Bob1. Since Bob2 is independent of
Bob1, his density matrix is the mixture of the states given
each of Bob1 ’s two possible measurements, weighted by
their relative frequencies. Hence, the input bias of Bob1
affects the statistics of Bob2 ’s measurement.
To begin with, we assume the measurements are

unbiased; i.e., both Bobs receive the inputs 0 and 1 with
equal probability. Clearly Bob1 cannot perform a strong

measurement, since he would destroy the entanglement,
and prevent Bob2 from being nonlocal with Alice.
However, Bob1 may not be able to observe nonlocality
with a very weak measurement either. To see this precisely,
consider that Alice and the Bobs initially share a singlet
state, and that they perform the standard measurements that
attain Tsirelson’s bound for the CHSH inequality: i.e.,
Alice measures in the Z̄ or X̄ direction, corresponding
to inputs 0 or 1, respectively, and the Bobs measure in
the directions −ðZ̄ þ X̄Þ= ffiffiffi

2
p

or ð−Z̄ þ X̄Þ= ffiffiffi
2

p
, for their

respective inputs 0 or 1.
Using the form of the CHSH expression [15] with the

classical bound at 2 and the quantum bound at 2
ffiffiffi
2

p
, we

find that the CHSH values of Alice with each Bob are given

by Ið1ÞCHSH ¼ 2
ffiffiffi
2

p
G, and Ið2ÞCHSH ¼ ffiffiffi

2
p ð1þ FÞ, where G and

F are the precision and quality factor of Bob1 ’s measure-
ment. These are plotted in comparison to the classical
bound in Fig. 4.
We see from the figure that Bob1 must tune the precision of

his measurement, as either a strong or weak measurement
would prevent Bob2 or himself, respectively, from seeing a
CHSHviolation.Hemust also use a pointerwith a good trade-
off—one cannot have a double violation using a square
pointer,while it is possiblewith aGaussian or optimal pointer.
Longer sequences of CHSH violations with biased

inputs.—Since it is possible to have two Bobs simulta-
neously violate CHSH with Alice, the next natural question
is whether there is a limit to the number of consecutive
violations achievable.
We find that it is possible for more than two Bobs to

violate CHSH with Alice, if the frequency of the inputs 0
and 1 to each Bob is not the same [19]. In the Supplemental
Material [14], Part F, we provide an explicit measurement
protocol that does so in the case that one of the inputs to the
various Bobs occurs much more often than the other input.
In this scenario, there is no limit to the number of Bobs that
can violate CHSH with Alice—the larger the bias of the
inputs, the longer the sequence of violations. However, in
our protocol, the value of the CHSH violation in the

FIG. 4. Plot of Ið1ÞCHSH (solid) as a function of the precision G of

Bob1, together with Ið2ÞCHSH (dashed) for different pointer types,
(from bottom) square, Gaussian and optimal.
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sequence falls off superexponentially: if Vn ¼ IðnÞCHSH − 2 is
the maximum violation that can be achieved by Bobn with
Alice, we find that for large n (see [14], Part G),

Vnþ1 ≈
V3
n

4
: ð12Þ

Discussion and open problems.—We have seen that the
trade-off between information gain and disturbance for von
Neumann measurements is strongly dependent on the
initial state of the pointer, and the optimal pointer state
differs considerably from the pointers considered usually,
such as the Gaussian wave packet. An interesting question
to ask is what form the optimal pointer takes for measure-
ments on higher dimensional systems.
We also obtained a constraint on the trade-off by relating

it to the probabilities in a simple Bell scenario. Such a
method can be used to extend the concept of weak
measurements to general nonlocal theories.
In the case of multiple observers violating a Bell

inequality, we have numerical evidence that if the inputs
to the various Bobs are unbiased, it is impossible to have
more than a double violation of CHSH with Alice. Proving
this analytically is an open problem. For general input bias,
an open question is whether there exists a protocol that
achieves a better CHSH violation than that found in this
Letter. Also, one may generalize to the case when the Bobs
have some information about each others’ inputs and/or
outcomes, this will presumably improve the CHSH viola-
tion. Finally, it would be interesting to include multiple
Alices in the setup, and investigate if it is possible to have
an arbitrarily long sequence of pairs of Alices and Bobs that
violate a Bell inequality.
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