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Detection of patient zero can give new insights to epidemiologists about the nature of first transmissions
into a population. In this Letter, we study the statistical inference problem of detecting the source of
epidemics from a snapshot of spreading on an arbitrary network structure. By using exact analytic
calculations and Monte Carlo estimators, we demonstrate the detectability limits for the susceptible-
infected-recovered model, which primarily depend on the spreading process characteristics. Finally, we
demonstrate the applicability of the approach in a case of a simulated sexually transmitted infection
spreading over an empirical temporal network of sexual interactions.
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Introduction.—One of the most prevalent types of
dynamic processes of public interest characteristic for
the real-life complex networks are contagion processes
[1-7]. Epidemiologists detect the epidemic source or the
patient zero either by analyzing the temporal genetic
evolution of virus strains [8—10], which can be time
demanding, or trying to do a contact backtracking [11]
from the available observed data. However, in cases where
the information on the times of contact is unknown or
incomplete or the infection is asymptomatic or subclinical
the backtracking method is no longer adequate. Because of
its practical aspects and theoretical importance, the epi-
demic source detection problem on contact networks has
recently gained a lot of attention in the complex network
science community. This has led to the development of many
different source detection estimators for static networks,
which vary in their assumptions on the network structure
(locally treelike) or on the spreading process compartmental
models (SI, SIR) [12-21], or both.

In the case of the SIR (susceptible-infected-recovered)
model there are two different approaches. Zhu et al.
proposed a sample path counting approach [15], where
they proved that the source node minimizes the maximum
distance (Jordan centrality) to the infected nodes on
infinite trees. Lokhov et al. used a dynamic message-
passing algorithm (DMP) for the SIR model to estimate
the probability that a given node produces the observed
snapshot. They use a mean-field-like approximation (node
independence approximation) and an assumption of a
treelike contact network to compute the source likelihoods
[17]. Altarelli et al. remove the independence assumption
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and use the message passing method with an assumption
of a treelike contact network to estimate the source [18]. In
our study, we drop all the network structure and node
independence assumptions and analyze the source prob-
ability estimators for general compartmental models.
The main contributions of our Letter are the following:
(i) We developed the analytic combinatoric, as well as
the Monte Carlo methods (direct and Soft Margin) for
determining exact and approximate source probability
distribution, and have also produced the benchmark
solutions on the 4-connected regular lattice structure.
(i1)) We measured the source detectability by using the
normalized Shannon entropy of the estimated source
probability distribution for each of the source detection
problems, and have observed the existence of some highly
detectable, as well as some highly undetectable regimes
for the SIR and other spreading models. We notice that the
detectability primarily depends on the spreading process
characteristics. (iii) Using the simulations of the sexually
transmitted infection (STI) on a realistic time interval of
200 days on an empirical temporal network of sexual
contacts we demonstrate the robustness of the Soft Margin
source estimator.

Methods.—In a general case, the contact network during
an epidemic process can be temporal and weighted, but we
first concentrate our analysis on a static undirected and
nonweighted network G = (V, E), where V denotes a set of
nodes and E denotes a set of edges. The random binary

vector R indicates which nodes got infected up to a certain
time 7. For the contagion model, we use the SIR model
with the simultaneous updates in time described by the
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probability p that an infected node infects a susceptible
neighbor node in one discrete step and the probability g
that an infected node recovers in one discrete step. We

observe one epidemic realization 7, of R at a time T of the
SIR process (p, g, T) on a network G and want to calculate
the source posterior probabilities P(® = 6;|R = 7,). We
have developed two complementary approaches that can
provide exact posterior probability distributions over nodes
in the spreading realization 7, via the Bayesian approach:
the direct Monte Carlo approach and analytical combina-
toric approach.

Using the direct Monte Carlo approach, for each potential
source node i (infected node in the realization 7,), a large
number 7 of epidemic spreading simulations with maximum
duration 7 is performed with i as an epidemic source. The
number of simulations n; which coincides with the realiza-
tion 7, is recorded. To cut down on the extensive calculation
required for the Monte Carlo simulations, we employ a
pruning mechanism (no errors introduced), stopping the
simulations at ¢ < T if the current simulation realization has
infected a node which is not infected in 7,. The probability of
the node i being the source of the epidemic is then calculated
as PO=0,R="7,) = n;/> ;n;. The statistical signifi-
cance of the direct Monte Carlo results are controlled with
the convergence conditions. For more information, see the
Supplemental Material [22], Sec. 2.

An alternative approach, the analytical combinatoric
approach assigns to each node of degree n a generating
function which is maximally (n + 1) dimensional, which
captures the events of node first infection and infection
spreading through its edges at specific times. Then, by
multiplication of the generating functions of all the infected
nodes from a realization, we are able to merge all
contributions together and get the source probability dis-
tribution. In the Supplemental Material [22], Sec. 1, along
with the detailed description of the analytical combinatoric
method, we demonstrate the correspondence between the
direct Monte Carlo and analytical combinatorics. A serious
disadvantage of the analytical method is that the calcu-
lations become prohibitively intricate in the case of non-
treelike configurations.

We have generated a series of benchmark cases on a
4-connected lattice (N = 30 x 30), for which we have
calculated the probability distributions over the potential
source candidates using the direct Monte Carlo estimator
(see Supplemental Material [22], Sec. 4). The source
detectability D(7,) = 1 — H(7,), is characterized via the
normalized Shannon entropy H (normalization by entropy
of uniform distribution) of the calculated probability
distribution P(® = 6,|R = 7.,).

Results depicting distributions of H for different parts of
the SIR parameter space for the regular lattice are given in
Fig. 1, plots (a), (b), and (c). The figures show qualitatively
the same detectability behavior across the p parameter, for
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FIG. 1 (color online). Plots (a), (b), and (c): Box plots depicting
distribution of entropy values (H) of source probability distri-
butions for a number of randomly generated spreading realiza-
tions across with different (p, ¢) parameters on the 4-connected
lattice: N = 30 x 30 nodes with 7 = 5, calculated by the direct
Monte Carlo method with 10°~10% simulations per source.

different values of parameter g. It is important to observe
the existence of three different regions: the low detect-
ability—high entropy region (p < 0.2), the intermediate
detectability—intermediate entropy region (0.2 < p < 0.7),
and the high detectability—low entropy region (p > 0.7).
We observe that the detectability transition is still present
even for different spreading models (SI, ISS, IC) and we
observe the interplay of the network size and stopping time
T on the detectability (see Supplemental Material [22],
Sec. 10 and Fig. 2). In Fig. 2, plot (a), we observe that in a
regime, when the network size restricts the epidemic
spreading but not the epidemic itself via it's natural
evolution characterized by the parameters (p, g) or stop-
ping time 7', the entropy is high as the realizations from
different sources are almost identical.

As the application of direct Monte Carlo and analytical
combinatoric approaches becomes prohibitively expensive
for realistic network sizes, we formulate an estimator which
is much more efficient in approximating the true underlying
source probability distribution for the particular epidemic
spread. We continue with the definition of the Soft-Margin
estimator, a generalization of the Monte Carlo inference
method, in which the direct Monte Carlo method represents
a limiting case. In order to proceed we first need to
introduce some useful definitions. The random binary
vector Ry describes the outcome of the epidemic process
and sample vectors: {7y |, ..., 7y, } describe n independent
outcomes of that process. Each sample vector 7y; is
obtained using the Monte Carlo simulation of the contagion
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FIG. 2 (color online). Plots (a), (b), and (c): Box plots depicting
distribution of entropy values (H) of source probability distri-
butions for a number of realizations starting from the central node
denoted with red color on the 4-connected lattice with different
sizes (3 x 3, 5 x5, and 7 x 7) with the SIR model for g = 0.5,
T =5, and different p values, calculated with the Soft Margin
method with the (10°~106) simulations per source and adaptive a
chosen from the convergence condition.

process with the 6 as the source. We measure the similarity
between vectors 7} and 7, by the Jaccard similarity function
@: (RN x RN) — [0, 1] calculated as the ratio of the size of
the interaction of set of infected nodes in 7, 7, and the size
of their union. The random variable ¢ (7., Ry) measures the
similarity between a fixed realization 7, and a random
vector realization that comes from the SIR process with the
source 6. The empirical cumulative distribution function of
the n samples from the random variable ¢(r,, 159) is
denoted F,(x), where x is the value of the similarity

variable. By taking the derivative of F,(x), we get the
probability density function (PDF) estimate:

Foe) = L Fo) = > s g7 R, (1)
i=1

where §(x) denotes the Dirac delta distribution. Having

defined the PDF for the observed similarities fy(x), we can
now define the main Soft-Margin inference expression as

ﬁ@—a@—w—AUmnmww, 2)

where w,(x) is a weighting function. We use the following
Gaussian weighting form: w,(x) = exp[—(x — 1)?/a?]. In
the limit where the parameter a — 0, we obtain the direct
Monte Carlo likelihood estimation. For cases when the
parameter a > 0, we obtain an estimator which estimates
the likelihood by using the weighting function w,(x) to

accept contributions from realizations whose similarity to
observed realization is less than 1. Using the property of
delta distribution, we simplify the expression for the Soft
Margin estimator to (for more details see Supplemental
Material [22], Sec. 5):

_ n —p(F.iFo) — 112
i=1

Note, that alternative view on the Soft Margin estimator is
the nonparametric density estimation with the Gaussian
kernels [24]. Finally, we do not need to set the Soft Margin
width parameter a in advance. After we calculate the
estimated PDF for every potential source F,(x), we can
choose the parameter a as the infimum of the set of
parameters for which the PDFs have converged. The
implementation details, time complexity analysis, and
pruning mechanism for the Soft Margin estimator can be
found in the Supplemental Material [22], Secs. 5, 6, and 7.

Results.—We now demonstrate the applicability of our
inference framework to detect the source of the simulated
STI epidemic spreading in an empirical temporal network
of sexual contacts in Brazil (see Fig. 3, plot (a)). This
publicly available data set [25] was obtained from the
Brazilian Internet community and is used as an
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FIG. 3 (color online). Plot (a): Visualization of a part of the
aggregated empirical temporal network of sexual contacts in
Brazil [25]. In plots (b), (c), and (d) the performance is measured
as the fraction of 500 experiments with a specific graph distance
of the maximum likelihood candidate to the true source. The
average execution time of a single experiment to calculate source
probability distribution over all potential candidates was around
12 s (on 50 cpu cores) with 20 000 STT simulations per node. Plot
(b): The baseline performance of a random estimator, which
uniformly assigns likelihood to potential nodes. Plot (c): The
influence of prior knowledge about initial outbreak moment [y —
€, fy + €] of the outbreak on performance. Plot (d): The influence
of randomized temporal ordering of interactions within A days,
with € = 0 (we know the starting time ;) on performance.
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approximation of temporal sexual contacts. The data set
(see Supplemental Material [22], Sec. 8) consists of the
triplets (v;, v I t), which represents the event that the nodes
v; and v; had a sexual interaction at a time 7. The first 1000
days in the original data set are discarded due to the
transient period with sparse encounters [25] and therefore
all temporal moments are measured relative to day 1000, as
the authors have done in the original study [25]. For our
temporal network, we use the SIR model (p =0.3,g =
0.01) for STIL The upper limit of the transmission prob-
ability for the STI that was previously used on this contact
network is p = 0.3 [25]. The recovery parameter ¢ = 0.01
represents a disease with the mean recovery of 100 days.

Note that here the calculation of exact source probability
distributions is computationally too demanding for both the
direct Monte Carlo and the analytical combinatoric method.
Therefore, we use the Soft Margin estimator with the
smallest width a for which the ML node probability
estimate converged. Our experiments consist of two parts:
(1) simulation of STI spreading through a temporal network
of sexual contacts and (ii) detection of the patient zero from
the observed process.

In order to demonstrate applicability of the approach
in realistic conditions, we introduce uncertainty in the
epidemic starting time #;, and later on also with respect to
node states in observed epidemic realization. Note that
uncertainties in (p, ¢) parameters can also be relaxed by the
marginalization procedure (see Supplemental Material [22],
Sec. 5). The relaxation of knowing the starting point of
the epidemic 7, is done by using the marginalization over
time, sampling over all possible starting points #, from a
uniform probability distribution over [ty — €, 1y + €], 2¢ =
{0, 50, 100} days. In Fig. 3, plot (c), we show the summary
results from 500 independent experiments, when the starting
time 7, was chosen from the interval of [100-200] days, the
end of the epidemic was set to the day ¢ = 300 and using
different uniform priors (¢) for the moment #,. Using the
uniform uncertainty of ¢ = 50 days, we can still detect the
source within its first neighborhood (distance 0 and 1 from
the source) in approximately 60% of the experiments. These
results are of great practical importance, since in reality we
do not know the exact starting times, but rather only an upper
and a lower bound on the starting point.

Next, we demonstrate how the uncertainty in the
temporal orderings of interactions within a time window
of the length A affects the performance of source detection.
We use a randomization algorithm which permutes time
stamps inside of a bin of A days from the start to the end of
the contact interaction network in a nonoverlapping way.
From Fig. 3, plot (d), we observe that higher uncertainty in
orderings (higher A) reduces the detectability of the source
of infection. However, the estimation framework is robust
to small-scale interaction noise.

We have also shown that our Soft Margin algorithm
estimates source probabilities with much higher precision

than other estimators (Jordan and DMP estimator) on
benchmark cases by comparing the results against the
direct Monte Carlo source probability estimations on the
regular lattice (see Supplemental Material [22], Sec. 3).
Results for source detection for different values of (p, q)
parameters and for the case when only a random subset
of the node states is observed can be found in the
Supplemental Material [22], Sec. 9.

Discussion.—The assumption about missing dynamic
information about times of infection or recovery in our case
study seems rather plausible for two realistic cases: STI
infections and computer viruses. Many STIs generate silent
epidemics since many of them are unrecognized, asymp-
tomatic, or subclinical as the pathogens are being trans-
mitted from patients with mild or totally absent symptoms.
A large number of people with STIs: chlamydia [26],
gonorrhea [26], human papillomavirus, and others show
mild or no symptoms at all. The second motivation comes
from silent spreading of a certain class of computer viruses
and worms through computer networks which become
active simultaneously on a specific date. Unlike other
approaches [12-21], we identified different source detect-
ability regimes and our methodology is applicable to
arbitrary network structures, and is limited solely by the
ability to computationally produce realizations of the
particular contagion process.
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