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It is a salient experimental fact that a large fraction of candidate spin liquid materials freeze as the
temperature is lowered. The question naturally arises whether such freezing is intrinsic to the spin liquid
(“disorder-free glassiness”) or extrinsic, in the sense that a topological phase simply coexists with standard
freezing of impurities. Here, we demonstrate a surprising third alternative, namely, that freezing and
topological liquidity are inseparably linked. The topological phase reacts to the introduction of disorder
by generating degrees of freedom of a new type (along with interactions between them), which in turn
undergo a freezing transition while the topological phase supporting them remains intact.
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Topology, liquidity, and glassiness.—The search for
topological states of matter in magnetism over the last
two decades has produced a good number of candidate
classical and quantum spin liquids [1] which show no
conventional ordering down to temperatures much lower
than the energy scale ΘW of their interactions. In experi-
ment, such behavior often goes along with glassy behavior,
be it for Ising [2] or Heisenberg [3–5] spins, in dimensions
d ¼ 2 [3,6,7] or d ¼ 3 [2,4], and for different disorder
types, e.g., distortions [8] or dilution [5]. In this way, the
study of glassy physics has become one of the staples of the
field. A comprehensive discussion is provided in Ref. [9].
A systematic understanding of the rich experimental

findings has been slow to emerge. Even the minimal
ingredients to obtain freezing remain unclear. A seductive
idea was the prospect of disorder-free glassiness, where a
rugged energy landscape was posited to exist even in the
absence of quenched disorder, thus accounting for the slow
dynamics [9,10]. A more pedestrian alternative is the realist
view that any system exhibits some level of quenched
disorder, and hence a tendency towards glassy behavior,
which becomes frequently visible in the case of spin liquids
as there, it is not preempted by other instabilities. Indeed, in
the case of bond disorder [11], the existence of a conven-
tional glass transition in the pyrochlores was shown to
occur at a critical temperature set simply by the amplitude
of the bond disorder [12].
Our work presents a third way towards glassiness in

topological spin states: the interplay of disorder with the
topological phase produces emergent degrees of freedom
along with interactions between them; it is these new
degrees of freedom which in turn undergo a freezing
transition. This combination of “extrinsic” disorder team-
ing up with “intrinsic” properties of the topological state
presents an attractive conceptual angle on the ubiquity of
spin freezing in those systems; we call the resulting state
“topological spin glass,” as spin freezing emerges from a

substrate of a topological spin liquid, in our example the
topological Coulomb phase of spin ice.
Phase diagram of diluted spin ice.—Our central result is

the phase diagram, Fig. 1, which shows the onset of the
topological Coulomb regime at a temperature set by the
cost of a topological defect (magnetic monopole) ΘW ∼ Δ.
At a lower temperature, Tc—proportional to the dilution
(density of missing spins) x—is a spin glass transition.
Below Tc, the correlations characteristic of the topological
Coulomb phase persist alongside a small frozen moment.
Remarkably, our theory is very simple when cast in terms

of missing spins, which we call ghost spins. This occurs
much in the same way that an almost filled band of
electrons is most simply described in terms of dilute,
positively charged holes, i.e., missing electrons.
The dumbbell model and ghost spins.—In dipolar spin

ice, the degrees of freedom are Ising spins on the pyro-
chlore lattice (Fig. 2) whose local easy axis directions, êi,
are defined by the line joining the centers of the pair of
tetrahedra which share them; the simplest appropriate
interaction Hamiltonian of Ising spins with moments ~μi;j
of size μ, separated by rij, contains short-range exchange
interactions in addition to the usual magnetic dipolar term,
DDij, of strength D, with
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FIG. 1 (color online). Phase diagram of spin ice with a small
density x of spins removed. The glass transition takes place at Tc,
while the crossovers from the high-temperature paramagnet to the
topological Coulomb phase, and to impurity dominated monop-
ole excitations take place at ΘW and Tδ, respectively.
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with a the nearest neighbor distance on the pyrochlore
lattice, and ad ¼ a

ffiffiffiffiffiffiffiffi
3=2

p
the separation between the

centers of the tetrahedra, which define a diamond lattice.
To derive our central results, we appeal to the equivalent

dumbbell model introduced in the prediction of the
existence of magnetic monopoles [13]. Here, each spin
is represented by two equal and opposite magnetic charges
Q ¼ μ=ad. The only detail of the model we require is that
the [13] are that the pairwise spin interactions can be
rewritten as a pairwise interaction of the total charges of
each tetrahedron, Qtet. This includes a contact interaction
Δðad=2μÞ2

P
tetQ

2
tet to reproduce the nearest neighbor

interaction correctly, in addition to standard (magnetic)
Coulomb interactions between any other pair of charges.
From these and the nearest neighbor exchange J, we
can construct two energy scales; D ¼ μ0μ

2=ð4πa3Þ, the

coupling constant of the dipolar interaction (with vacuum

permeability μ0) and Δ ¼ ð2J=3Þ þ 8
3
ð1þ

ffiffi
2
3

q
ÞD, the

energy cost of a jQtetj ¼ 2Q ≠ 0 defect.
Crucially, any of the exponentially many configurations

satisfying the ice rule—that two spins point into each
tetrahedron and two out [14]—is an exact ground state of
this model. This amounts to each diamond lattice site being
charge neutral: in any ground state, the charge density
vanishes locally [13].
This is the basis for what follows. Removing a spin by

chemical substitution of a magnetic by a nonmagnetic ion
leaves behind two adjacent tetrahedra with equal and
opposite charges �Q, a dipole −~μ—the ghost spin—with
moment opposite to that of the removed spin. Just like the
charge of a hole in a semiconductor being the opposite of
that of the missing electron, here it is the spin’s magnetic
moment which has changed sign.
The effective energetics follows simply by keeping track

of the interactions between those charges—the pairwise
interaction between separated ghost spins, ~Hij has the
standard dipolar form (again in complete analogy to the
Coulomb repulsion between holes in a semiconductor):

~Hij ¼ ~DDij: ð2Þ

Note the tremendous complexity reduction—a dense,
weakly diluted system of dipolar spins is described in terms
of a low density of ghost spins. However, the intricate
nature of the spin ice phase has not vanished entirely. The
following are its most striking manifestations.
Firstly, the fractionalized excitations of the topological

spin ice phase can be nucleated at the missing spin. In
detail, a pair of ghost spins can be turned into a pair of
impurity magnetic monopoles by flipping a string of spins
arranged head-to-tail running between them. For well-
separated monopoles, the resulting configuration is higher
in energy by δ ¼ 4

ffiffiffi
2

p
D=ð3 ffiffiffi

3
p Þ per monopole.

Secondly, the ghost spins do not disrupt the correlations
in spin ice, as they have zero net magnetic charge, so that
in particular the pinch points [15–17] found in neutron
scattering, which reflect the emergent gauge field defining
the Coulomb phase, remain intact.
Thirdly, the effective dipolar coupling constant between

the ghost spins ~D, Eq. (2), has a contribution coming from
the fluctuations of the spins in the bulk on top of the simple
magnetostatic coupling constant D:

~D ¼ Dþ 3Tffiffiffi
2

p
π
: ð3Þ

This happens because the number of spin ice states com-
patible with a given configuration of ghost spins depends on
their relative orientation; this yields an entropic contribution,
Jent, to the spin interaction [15]—for details, see the
Supplemental Material, where we derive the expression

FIG. 2 (color online). Complexity reduction via genesis of
ghost spins. The cartoons are for a projection of spin ice onto the
two-dimensional plane (top left panel) for clarity; the diamond
lattice defined by the centers of the tetrahedra thus turns into a
square lattice. At low temperature T ≪ δ;Δ, spin ice with a small
density x of missing spins (crossed out in top right) is equivalent
to a small density of ghost spins (bottom left). This is straight-
forwardly established by writing each spin as a dumbbell of equal
and opposite magnetic charges. At vertices either end of a missing
spin, the net charge is nonzero (red and blue circles), so that they
form the ends of the dipole of the ghost spin. At all other vertices,
the net charge vanishes (green circles) and can thus be omitted,
so that this pristine bulk of spin ice only provides an effective
medium (shaded green) carrying an interaction between the ghost
spins, Eq. (3) and Fig. 3.
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Jentij ¼ −Thσiσjinn; ð4Þ
where hσiσjinn stands for the correlations between Ising
spins on sites i and j in spin ice with the dipolar interactions
switched off entirely; this gives Eq. (3) for rij ≫ ad but is
accurate also for small rij (Fig. 3).
In other words, thanks to the Coulomb phase, the

missing dipolar spins know about the correlations they
would have if they were neither missing nor dipolar.
Freezing of the ghost spins.—It is notoriously hard to

simulate spin freezing transitions [19–21], all the more so
in this case where a small number of ghost spins requires
simulation of a much larger number of bulk spins.
However, thanks to the abovementioned complexity reduc-
tion, this effective problem, Eq. (2), can be analyzed, still
with a considerable amount of numerical effort (see
Supplemental Material [18] for details).
We have demonstrated numerically that there is spin

freezing for the random dipolar model (inset of Fig. 3 and
Supplemental Material [18]). We find a critical temperature
Tx ∝ x, as one would expect for a dipolar system with
typical distance between spins r ∼ x−1=3, and hence dipolar
interaction energy scale∼r−3 ∼ x [22]. We find numerically
that Tx ≃ 0.95Dx, which implies an entropically renormal-
ized value of TcðxÞ ¼ Tx=½1 − ð3Tx=

ffiffiffi
2

p
πDÞ� for the freez-

ing transition into the topological spin glass.
This complements known cases of freezing for random

dipoles, namely, dense dipoles on a cubic lattice with
random orientations [23], or dilute but collinear dipoles on

a cubic lattice [24,25]. In our case, the dipoles are dilute
and their orientations are neither random nor collinear,
being picked from the local easy axes of the occupied sites,
respecting the cubic symmetry of the pyrochlore lattice.
Energy scales and the role of perturbations.—Let us

now examine the phase diagram Fig. 1 in more detail. At
high temperature, T ≫ Δ, we have an ordinary disordered
paramagnet. Below ΘW ∼ Δ, the ice rules are enforced,
yielding the topological Coulomb regime with experimen-
tally sparse monopoles as elementary excitations, ρ∼e−Δ=T

[13]. However, the impurity magnetic monopoles men-
tioned above have a cheaper energy cost δ < Δ than a
monopole in the bulk as no energy needs to be paid for
violating the ice rule in the first place—this is taken care of
by the quenched chemical dilution. The corresponding
density is ρx ∼ xe−δ=T , which dominates over ρ at lower
temperatures below Tδ ¼ ðδ − ΔÞ= ln x.
The enhanced monopole density on account of the

presence of the impurity monopoles manifests itself in
all quantities depending on ρ such as, e.g., the width of the
pinch points in equilibrium [16]. However, perhaps their
most useful function is in a reduction of the massive
slowing down of the dynamics [26]. Whether this slow
down is a cooperative or a single-ion effect (e.g., due to a
thermal activation factor in an attempt rate for single spin
flips, τa) is an important open question, and “doping” with
impurity monopoles would allow tuning ρ, involved in the
cooperative physics, independently of any change in τa.
Further, at Tc, the glass transition occurs, at which
(presumably [27,28]) Ising symmetry is broken. The bulk
spins in the Coulomb phase continue to fluctuate, however.
This is the above-mentioned coexistence of the topo-

logical phase and the spin glass phase for which it provides
the substrate—the topological spin glass.
The frozen moment—the “order parameter” qEA ¼

ð1=NÞPN
i¼1h~μi · êii2=μ2 of the spin glass—appears at Tc

and grows as the temperature is lowered, as do static
local fields set up by the frozen moments Bf ∼
ðμ0μx ffiffiffiffiffiffiffiffi

qEA
p Þ=ð4πa3Þ [29]. The resultant Zeeman energy

∼D ffiffiffiffiffiffiffiffi
qEA

p
x will try to pin the bulk spins to point along the

direction of the local fields, against the entropy of fluctua-
tions between different spin ice configurations [30], esti-
mated by Pauling to be Sp ≈ 1

2
ln 3

2
per spin. The glass

transition at Tc being continuous, for T ≲ Tc the frozen
moment and concomitant Zeeman energies will be very
small, and the bulk spins will continue to fluctuate
essentially like in pure spin ice. As T is lowered further,
the entropic contribution of the bulk fluctuations to the free
energy vanishes approximately ∝ T, while qEA grows,
so that the system eventually freezes into one spin ice
configuration. Since the static fields are too weak to break
the ice rules, the frozen state still exhibits the correlations of
the Coulomb phase when averaged over the entire sample
[14,31]. The interplay between the liquidity and glassiness
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FIG. 3 (color online). Correlations between a pair of ghost spins
~μ0 and ~μr in an otherwise fully populated sample of spin ice
(of linear dimension L ¼ 12, with D ¼ 1.41 and T ¼ 0.5 K),
separated by r units in the ½101� direction. This is compared to
two isolated magnetic dipoles in an otherwise empty unit cell;
agreement with numerics is only achieved upon including the
entropic interactions mediated by the spin ice bulk, for which the
dashed line denotes the asymptotic form, Eq. (3). The inset shows
the freezing transition of the ghost spins. Number of spins equals
16L3x in a system with L3 unit cells, with x ¼ 1=16. The data
collapse of ξ=L for different system sizes, using ν ¼ 1.16ð8Þ and
critical temperature Tx ¼ 0.082ð3Þ, shows a continuous spin
glass transition (see Supplemental Material [18]).
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thus leads to a gradual but complete loss of the Pauling
entropy as the temperature is lowered further below TcðxÞ,
which can be detected experimentally in specific heat.
The pinch points in neutron scattering, however, persist
even below TcðxÞ.
Comments on experiment and outlook.—Generally

speaking, the low-temperature physics of frustrated systems
is nonuniversal, and the topological spin glass may be
preempted by perturbations to the dumbbell Hamiltonian if
they are large enough. Indeed, the question of what happens
in diluted spin ice compounds [32] was recently addressed
in detailed numerical simulations [33], which emphasized
the need to consider the complete Hamiltonian to obtain
a fit of theory to experiment. The question of whether
freezing generically occurs was not settled there.
The central point of our work is that there exists a

microscopic Hamiltonian for which the existence of the
topological spin glass can be predicted with a high degree
of confidence. Features such as the simultaneous appear-
ance of topological spin liquidity and glassiness appear
naturally, along with the presence of a small frozen moment
alongside a sizable fluctuating component. The challenge
for establishing its existence in experiment is thence to find
a compound avoiding other instabilities both of the non-
dynamic and dynamic nature, such as a noncooperative
slowing down [34,35]. This seems a very realistic prospect
given the wide range of spin ices available nowadays,
with the combination alone of A2B2O7, (A ¼ Dy;Ho;Tb;
Yb;…; B ¼ Ti;Ge; Sn;…) providing numerous examples
differing in many fundamental parameters such as the
relative size of exchange and dipolar interactions, as well
as many single-ion properties [36]. More broadly, we
would like to emphasize the genericity of the ingredients
involved in our study. We used the “vacuum” of a Coulomb
phase and its local charge neutrality, and the fact that
defects therein will have an interaction determined by the
emergent gauge theory describing the low energy physics
of the topological phase. The detailed resulting collective
behavior will be as varied as the richness of the latter
ingredients; therefore, it is clear that an outcome in which
randomly located emergent degrees of freedom interact via
highly frustrated interactions is a generic one, and so is the
expectation of a topological spin glass.
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