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We study the electronic properties of graphene with a finite concentration of vacancies or other resonant
scatterers by a straightforward lattice quantum Monte Carlo calculation. Taking into account a realistic
long-range Coulomb interaction, we calculate the distribution of the spin density associated with midgap
states and demonstrate antiferromagnetic ordering. An energy gap is open due to interaction effects, both in
the bare graphene spectrum and in the vacancy or impurity bands. In the case of a 5% concentration of
resonant scatterers the latter gap is estimated to be 0.7 eV and 1.1 eV for graphene on boron nitride and
freely suspended graphene, respectively.

DOI: 10.1103/PhysRevLett.114.246801 PACS numbers: 73.22.Pr, 05.10.Ln, 71.30.+h

Defects enormously effect the electronic properties of
graphene and other Dirac materials. In particular, vacancies
in graphene are known to create midgap states [1,2] that,
together with the electron-electron interaction, can result in
the appearance of magnetic moments and rich many-body
phenomena (see the review of early work in Refs. [2,3] and
recent experimental and theoretical papers [4–7]). Note that
hydrogen adatoms and some univalent organic admolecules
(resonant scattering centers) produce a very similar elec-
tronic structure [8]. Qualitatively, this is explained by the
fact that the sp3 state of the carbon atom originates from its
bond with a univalent adatom or admolecule, making it
unavailable for pz electrons (π orbitals) at energies at the
neutrality point plus or minus several eV; for these
electrons such an atom is just cut from the lattice. Thus,
in discussing “vacancies” we will also keep in mind these
cases; moreover, they are even closer to the simple model of
a vacancy as just a missed site in the honeycomb lattice (the
model that will be used in our calculations) since the real
vacancy produces very strong lattice distortions essentially
effecting the electronic structure [9]. The case of a finite
concentration of vacancies is quite complicated even at the
single-particle level [10–12]. Here, we consider this case by
taking into account a realistic model of the Coulomb
interaction in graphene [13] via straightforward lattice
quantum Monte Carlo (QMC) simulations. Keeping in
mind what was said above, the best and easiest exper-
imental realization would be partially hydrogenated gra-
phene. We will study the antiferromagnetic phase transition
driven by the presence of adatoms. It manifests itself in
emergent magnetic moments concentrated near the ada-
toms, as well as in band gap opening. Both features of this
phase transition are very important. The band gap, which is

controllable via hydrogenation, offers an interesting pos-
sibility for prospective graphene applications in semicon-
ductor devices. Emergent magnetic moments could be one
of the reasons for the short spin relaxation time in graphene,
which is an essential obstacle for producing efficient
spintronic devices [14,15]. We emphasize that unlike the
previous density functional theory study of vacancies in
graphene [9,16], here we treat a very large sample with a
random (nonregular) distribution of vacancies using
unbiased QMC calculations. Thus, we could estimate
how close the vacancies influence each other in various
geometrical configurations (for example, by a calculation
of the variations of the magnetic moment). Also, we could
extract the energy of the midgap state associated with any
particular scatterer and observe the variations of these
energies from one scatterer to another depending on its
surroundings. These measurements give us an opportunity
to estimate a realistic width for the midgap energy band for
a fixed distribution of scatterers. The demonstrated pos-
sibility of QMC simulations of large samples with arbitrary
positions of scatterers is even more important because in
real samples adatoms can migrate and form clusters. This
phenomenon is now the focus of intensive research [17,18].
Our technique can be applied to these real spatial configu-
rations of scatterers. In principle, one can calculate the
potential of interaction between adatoms by QMC calcu-
lations and model the formation of clusters, which is an
interesting project for the future. Here, we restrict ourselves
only to the case of a random distribution of defects.
We start with the tight-binding Hamiltonian for non-

interacting electrons with a staggered mass term, which is
essential in our simulations for the following reasons: (1) it
eliminates the zero mode in the spectrum of quasiparticles,
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thus making the fermionic operator M (see below) invert-
ible and (2) it serves as a seed for the antiferromagnetic
phase transition that we will study. The initial Hamiltonian
without interaction and adatoms reads

Ĥtb ¼ −t
X

hx;yi
ðâ†y;↑âx;↑ þ â†y;↓âx;↓ þ H:c:Þ

�
X

x

mðâ†x;↑âx;↑ − â†x;↓âx;↓Þ; ð1Þ

where t ¼ 2.7 eV, the sum
P

hx;yi goes over all pairs of
nearest-neighbor sites of the graphene honeycomb lattice
(we impose periodic spatial boundary conditions as in
Refs. [19,20]), and the mass term has a different sign for
different sublattices. Here, â†x;↑, âx;↑ and â†x;↓, âx;↓ are the
creation or annihilation operators for spin up and spin down
electrons at π orbitals.
Next, we introduce the electrostatic interaction with

potentials Vxy: ĤC ¼ 1
2

P
x;yVxyq̂xq̂y, where q̂x ¼

â†x;↑âx;↑ þ â†x;↓âx;↓ − 1 is the operator of an electric charge
at lattice site x. The whole matrix Vxy is constructed in the
following way: at small distances [on site interaction
(Vxx ≡ V00) and interactions with the nearest (V01),
next-to-nearest (V02), and next-to-next-to-nearest (V03)
neighbors] we use the potentials calculated by the con-
strained RPA method [13]; at larger distances we use the
ordinary Coulomb Vxy ¼ VCr01=rxy. The parameter VC
defines the strength of the Coulomb tail. Since r01 is the
distance between the nearest neighbors, VC is equal to the
Coulomb repulsion energy at the distance of the conjugated
C–C bond. There is a small difference in the calibration in
our model (t ¼ 2.7 eV) and the calculations in Ref. [13],
where the hopping parameter was 2.8 eV, but any possible
changes in observable quantities due to this difference
are definitely outside the accuracy of the applied QMC
technique.
We use two sets of the interaction potentials. The first is

called “ordinary potentials” and corresponds to freely
suspended graphene (the dielectric constant of the envi-
ronment is equal to 1). At small distances it is simply the set
of potentials from Ref. [13]: V00 ¼ 9.3 eV, V01 ¼ 5.5 eV,
V02 ¼ 4.1 eV, and V03 ¼ 3.6 eV. The strength of the
Coulomb tail is defined by the ratio V03 ¼ VCr01=r03;
thus, VC ¼ 7.2 eV. It is a simple continuous extension of
the potentials at small distances. The second set is specified
as “screened potentials” and corresponds to graphene at a
substrate with a dielectric constant ϵ ¼ 4.5, which is
roughly the value reasonable for both boron nitride and
SiO2. In this case the Coulomb tail is ð1þ ϵÞ=2 ¼ 2.75
times weaker while V02 and V03 are 1.5 times smaller. V00

and V01 are untouched since screening by the substrate
should be irrelevant at a few interatomic distances.
As was already mentioned, the vacancy or adatom is

modeled by setting to zero all hoppings to the vacant site.

We also exclude the vacant sites from the interaction term
HC because they have constant zero charge. We employ a
hybrid Monte Carlo algorithm, broadly used in lattice
QCD. It was applied earlier for studies of graphene in
Refs. [21,22], where so-called staggered fermions were
used to model the low-energy effective field theory of
graphene. This algorithm was developed further in
Refs. [19,20,23]. First, we perform a Suzuki-Trotter
decomposition of the partition function expð−βHÞ in order
to represent it as a functional integral over trajectories in
Euclidean time. In order to get rid of the four fermionic
terms in the Hamiltonian, we use a Hubbard-Stratonovich
transformation and obtain the following partition function
after integrating out fermionic fields:

Tre−βĤ ≅
Z

Dφx;ne−S½φx;n�j detðM½φx;n�Þj2; ð2Þ

where φx;n is the Hubbard-Stratonovich field for time slice
n and spatial coordinate x. δτNt ¼ β, where δτ is the step in
Euclidean time, Nt is the number of steps, β is the inverse
temperature, and M is the fermionic operator (inverse
fermionic Green’s function at a given configuration of
auxiliary field). We use its particular form [20]. It was
discussed in Ref. [24] in more detail (including issues with
the continuous limit δτ → 0). The particle-hole symmetry
for graphene at the neutrality point makes the integration
weight in Eq. (2) positive due to the appearance of the
squared modulus in the determinant; thus, we have no
fermionic sign problem [25]. For both sets of interelectron
interaction potentials, the action of the Hubbard-
Stratonovich field S½φx;n� is also of a positive definite
quadratic form. Thus, we generate the configurations of
φx;n by a Monte Carlo method and calculate physical
quantities as averages over the generated configurations.
Here, we follow Refs. [19,20,23] and use the so-called Φ
algorithm.
We used lattices with spatial sizes 18 × 18, 24 × 24 and

36 × 36 in order to study finite-size effects. We studied a
lattice with 5% adatoms (in most of the calculations),
scattered uniformly through the whole sample. Three
different temperatures were studied: T ¼ 0.5 eV (corre-
sponding to Nt ¼ 20), T ¼ 0.125 eV (Nt ¼ 80), and T ¼
0.0625 eV (Nt ¼ 160). For all temperatures we generated
configurations with four masses; for example, in the case of
T ¼ 0.125 eV we used m ¼ 0.05, 0.1, 0.15, and 0.2 eV.
Physical results are obtained via extrapolation to zero mass.
In all calculations except for the energies of the midgap
states we use “ordinary potentials.”
According to the Lieb theorem for the Hubbard model

[2,26] the ground state for the case of vacancies equally
distributed between two sublattices should be a spin singlet,
and there are no physical reasons to expect that the long-
range character of the Coulomb interactions can change this
conclusion. Keeping in mind that a single vacancy or
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adatom induces a magnetic moment, one should consider
the opportunity for antiferromagnetic ordering at a
finite concentration (ferromagnetism is impossible). In
this case the order parameter is the difference in
average spin between sublattices (denoted as A and B in the
formula): hΔni ¼ hð1=NAÞ

P
x∈Aðâ†x;↑âx;↑ − â†x;↓âx;↓Þ−

ð1=NBÞ
P

x∈Bðâ†x;↑âx;↑ − â†x;↓âx;↓Þi; NA and NB are the
overall number of sites in the A and B sublattice, respec-
tively. The results are presented in Fig. 1(a). In the case of
the highest temperature (0.5 eV) the order parameter is
equal to zero in the physical limit of zero bare mass,
disregarding the presence of adatoms. Only at the lower
temperature (0.125 eV) does the order parameter acquire a
nonzero value in the presence of adatoms and it remains
almost stable with a further decrease in temperature
(0.0625 eV). Figure 1(b) presents the temperature depend-
ence of the antiferromagnetic order parameter. This calcu-
lation was also performed using one particular random
distribution of adatoms for each concentration. One can
clearly see a sharp transition at a certain critical temperature
(Neel temperature). The results were fitted with a “step

function” fðTÞ ¼ Cf1 − tanh½bðT − aÞ�g, where the
parameter a gives us the value of the critical temperature.
Thus, we have an estimation of the effective antiferromag-
netic coupling (for a 1% concentration of defects),
J ∼ 0.1 eV. This value is 2 orders of magnitude larger
than the one estimated from recent experimental data for
vacancies in graphene [27]. This is an important point,
showing that the exchange interaction is probably very
sensitive to the real electronic structure (we mentioned in
the introduction that for real vacancies it is very strongly
effected by atomic reconstruction) and that the use of the
simplest one-band tight-binding model instead of full-
electron calculations can be dangerous in problems related
to magnetism. Recent density functional calculations of
exchange interactions in single-site hydrogenated or fluo-
rinated graphene [28] predict complicated noncollinear
magnetic ground states, in sharp contrast with the pre-
dictions of the Lieb theorem for the single-band model
(saturated ferromagnetism). This issue requires further
investigation.
The spatial distribution of the electron spin density is

presented in Fig. 2. It represents the quantity fx ¼
hâ†x;↑âx;↑i at each lattice site. Since the particle-hole
symmetry is unbroken, the equality hâ†x;↑âx;↑i þ
hâ†x;↓âx;↓i ¼ 1 is satisfied exactly for each lattice site.
This means that regions with positive fx have noncom-
pensated spin up; negative fx corresponds to noncompen-
sated spin down. It is clearly seen that antiferromagnetic
order is generated in the vicinity of the adatoms. Moreover,
one isolated adatom has a nonzero average spin (see the
first row in Table I). These spins tend to be parallel for
adatoms at one sublattice and antiparallel for adatoms at a
different sublattice. If the adatoms are placed equivalently
on both sublattices, they generate the same spin excess at
both sublattices and thus the full spin will be close to zero.
This means that, indeed, the statement of the Lieb theorem
[26] remains correct in the case of long-range Coulomb
interaction. A more detailed description of spin-spin

FIG. 1 (color online). (a) Antiferromagnetic order parameter at
various temperatures, calculated on different lattices in the
presence of adatoms and without them. (b) Temperature depend-
ence of the antiferromagnetic order parameter in the zero bare
mass limit. The calculation was performed on a 12 × 12 lattice.

FIG. 2 (color online). Distribution of average spin. The color
scale corresponds to hSzi at a site in the zero bare mass limit.
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correlations including explicit evidence for spontaneous
breaking of SU(2) spin symmetry is presented in the
Supplemental Material [30].
In order to characterize the correlation between adatoms

on one sublattice quantitatively, we have measured the
full magnetic moment M ¼ 2μBhSzi for some spatial
configurations of vacancies. The results (in units of Bohr
magnetons) are summarized in the Table I. One can observe
a strong dependence of the magnetic moment on the
geometry of the adatom configurations. For example,
two adatoms at a distance of one lattice step have a
magnetic moment 1.5 times larger than two isolated
adatoms.
The second set of calculations is devoted to measure-

ments of the mass gap in the presence of vacancies or
adatoms. We study two types of energy bands: “normal”
energy bands, which transfer into Dirac cones in the
absence of adatoms, and midgap states, which are con-
centrated in the vicinity of isolated adatoms. In the latter
case we perform calculations for both sets of potentials to
measure the influence of screening on the energies of the
midgap states. The calculation of the energies is based on
the two-point Euclidean Green’s functions contracted with
some guess for the projector to the wave function ψðxÞ of
the state we are interested in

CðτÞ ¼
X

x;y

Trðâ†xψ̄ðxÞe−τĤâyψðyÞe−ðβ−τÞĤÞ: ð3Þ

At large enough τ this correlator is proportional to e−τE0 ,
where E0 is the energy of the state under study. In the case
of a normal energy band we use the lattice exponent
exp ði~k ~xÞ concentrated at one sublattice with wave vector
~k at theK point of the Brillouin zone as a guess for the wave
function. Therefore, we are able to estimate the lower
bound of the energy band and the energy gap between these
bands. In the case of midgap states, we guess that the wave
function is concentrated in the three nearest neighbors of
the vacant site. In order to check these measurements we
perform the same calculation for freely suspended graphene
without vacancies. In this case the gap should be equal to

zero in the zero bare mass limit [20]. The results for the
normal energy band are presented in the inset of Fig. 3. In
the presence of vacancies we use a simple linear fit.
Without vacancies, the polynomial fit ϕðmÞ ¼ c0 þ c1mþ
c2m2 is employed. For the largest lattice (36 × 36), c0 is
zero within the error bars, so the fitting works well and this
lattice is large enough to reproduce the zero gap in the
mbare → 0 limit. For smaller lattices one can observe a
nonzero c0 due to the large finite-size effects.
For the midgap states we used wave functions concen-

trated near 12 relatively isolated adatoms, marked with
black numbers in Fig. 2. Summarizing all of these calcu-
lations (see Fig. 3), we conclude that the states concentrated
near the adatoms form two rather broad bands between the
normal energy bands. The positive and negative energies of
the midgap states correspond to adatoms on different
sublattices. The gap between these bands is calculated as
the distance between the two levels with the smallest
absolute values of energies. It can exceed 1 eV for
suspended graphene, but decreases for graphene at the
substrate. The width of the bands is a measure of the
interplay between the midgap states concentrated near
different vacancies. Obviously, if the concentration of
adatoms tends to zero, the energies of the midgap states
will be almost constant. The same effect is observed here in
the case of a suppressed Coulomb tail: the midgap states
near isolated vacancies recognize their surrounding more
poorly.

TABLE I. Average magnetic moment for different configura-
tions of adatoms. R3 corresponds to one isolated adatom, R4
corresponds to two adatoms at a distance of two lattice steps, R5
contains two adatoms at the distance of one lattice step, and R1
and R6 contain four adatoms (denser configuration in the case
of R1).

Region on the map M ¼ 2hSzi
R3 0.530� 0.016
R4 1.330� 0.026
R5 1.542� 0.026
R6 2.70� 0.04
R1 3.20� 0.04

FIG. 3 (color online). Energies of the midgap states for two sets
of interelectron potentials. Each state corresponds to one isolated
vacancy marked with the number in Fig. 2. The center and width
of the bands are calculated in the limit m → 0. The center is the
average over the energies of all states in each band and the width
is equal to the doubled dispersion. T ¼ 0.125 eV. The real
physical situation is restored in the limit m → 0. Inset: energy
gap between normal energy bands. All values correspond to theK
point in the Brillouin zone.
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To conclude, electron-electron interactions for a finite
concentration of adatoms lead to antiferromagnetic order-
ing, in qualitative agreement with the Lieb theorem despite
its formal inapplicability to systems with long-range
Coulomb interactions. Probably and even more interest-
ingly, they result in a gap opening: a “big gap” of the order
of several eV at the K point and a “smaller gap” (but still
quite noticeable, about 1 eV for a 5% concentration of
adatoms) in the midgap states. The latter prediction can be
checked by measuring the optics of chemically function-
alized graphene. One could expect that the effects of
disorder will smear the gap in the defect band transforming
it into a pseudogap. One could hope, however, that the two-
peak structure characteristic of the pseudogapped state can
be distinguished from a single-peak structure centered near
the neutrality point predicted by the single-particle picture
[29]. Alternatively, the reconstruction of the defect band
could be studied experimentally by scanning tunneling
spectroscopy.
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