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We show that the critical velocity of a superfluid flow through a penetrable barrier coincides with the
onset of the analog black-hole lasing effect. This dynamical instability is triggered by modes resonating in
an effective cavity formed by two horizons enclosing the barrier. The location of the horizons is set by
vðxÞ ¼ cðxÞ, with vðxÞ; cðxÞ being the local fluid velocity and sound speed, respectively. We compute
the critical velocity analytically and show that it is univocally determined by the configuration of the
horizons. In the limit of broad barriers, the continuous spectrum at the origin of the Hawking-like radiation
and of the Landau energetic instability is recovered.
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Introduction.—A very relevant and not fully understood
problem in the field of superfluidity is the nature of the
decay of the flow past a macroscopic obstacle. On the one
hand, it is known how superfluidity decays, namely, via
phase slippage induced by nonlinear or topological exci-
tations like solitons or vortices [1]. However, on the other
hand, the question why superfluidity breaks down above
a certain critical velocity has not yet found a conclusive
answer, except from the limiting case where the obstacle is
only a small perturbation of a homogeneous flow, in which
case the Landau energetic instability takes place.
Because of its high degree of controllability, an optimal

system for the investigation of superfluidity is aBose-Einstein
condensate (BEC) of ultracold dilute atoms [2]. In this
system, obstacles are created by laser beams which can be
precisely controlled over distances of the coherence length.
This has allowed the observation of superfluid decay and
phase slippage with BECs both with moving obstacles in a
bulk [3–6], aswell aswith obstacles forming a constriction for
the flow [7–12]. A quantitative theoretical description of
BECs is provided by the Gross-Pitaevskii (GP) equation for
the superfluid order parameter Ψðr; tÞ. It contains the crucial
ingredients giving rise to superfluidity—phase coherence and
nonlinearity—and deals with a simple single classical field.
These same favorable features have made it clear that

BECs are also suitable to implement analog models of
gravity [13,14]. Indeed, first experimental evidences of
analog model phenomenology and/or quantum vacuum
fluctuations have recently been reported [15–18]. The
analog model description not only puts the rich BEC
phenomenology into a much broader context, but allows,
at the same time, for new predictions and interpretations.
In this Letter, using concepts borrowed from analog

models, we show that the supercurrent instability appearing

at the critical velocity of the compressible flow through a
constriction corresponds to the so-called black-hole lasing
effect [19–21]. This provides, on the one side, a deeper
understanding of a long standing problem in superfluidity
and nonlinear dynamics; on the other side, it allows us to
introduce a new setup where the physics of sonic holes
emerges naturally.
Focusing on the one-dimensional (1D) flow of a BEC

through a penetrable repulsive barrier, we show that the
instability governing the underlying saddle-node bifurca-
tion [22,23] is actually a dynamical black-hole lasing effect
triggered by a finite set of propagating modes which
resonate within an effective cavity formed by two horizons
enclosing the obstacle. The position of these sonic horizons
is set by vðxÞ ¼ cðxÞ (see Fig. 1), with vðxÞ; cðxÞ being the
local flow velocity and sound speed, respectively. Even for
a barrier much thinner than the BEC coherence length, the
above local quantities are of physical relevance, providing
additional negative energy modes inside the cavity where
vðxÞ > cðxÞ. Furthermore, the critical velocity and decay
rate depend directly on the configuration of the horizons,
and only indirectly on the shape of the barrier and
interaction strength [24]; i.e., two very different barriers
can give rise to a comparable critical velocity and decay
rate, offering a means of experimental testing. For obstacles
much broader than the coherence length, one recovers the
continuous spectrum of negative energy modes at the basis
of Hawking radiation from a single horizon and of the
Landau energetic instability, which is triggered by the
presence of an impurity in homogeneous supersonic flows.
Model setup and saddle-node bifurcation.—A BEC

flowing in one direction with a strong transverse confine-
ment can be well described by the 1D GP equation [2]
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iℏ∂tψðx; tÞ ¼
�
−
ℏ2

2m
∂xx þ VðxÞ þ gjψðx; tÞj2

�
ψðx; tÞ;

ð1Þ

where ψðx; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðx; tÞp

eiϕðx;tÞ is the superfluid order
parameter (or the BEC wave function), VðxÞ is a repulsive
square barrier potential of width 2d and height V0, and g is
the effective 1D interaction strength. We model the flow
by imposing that the density n ¼ jψ j2 and velocity
v ¼ ℏ∂xϕ=m take constant values n∞, v∞, respectively,
far from the barrier at jxj → �∞. This is completely
equivalent to solving the GP in a moving frame without
the above boundary conditions, which, in turn, describes
the case of a moving barrier in a standing BEC [22]. The
solutions of the nonlinear Eq. (1) with these boundary
conditions show a saddle-node bifurcation [22,23,27–29] at
a critical velocity vc (or barrier height Vc), where the only
two stationary solutions merge and disappear. These two
solutions, shown in the lower panels of Fig. 1, become a
plane wave and a soliton when the height of the barrier goes
to zero. For this reason, in what follows, we shall refer to
them as the plane wave (PW) solution and the soliton (S)

solution. As indicated by the arrows in the upper left panel
of Fig. 1, the PW solution is a stable attractor within the
parameter region delimited by the S solution. As verified
numerically with GP dynamics [22] and linear stability
analysis [23,30], the latter is, instead, dynamically unstable.
This unstable behavior, characterized by soliton emission,
is also present in the whole region above vc, where the
emitted solitons belong to a nonlinear dispersive shock-
wave [22,31,32]. The dynamical saddle-node phase dia-
gram of the upper left panel in Fig. 1 can be modeled by
the equation _fðtÞ ¼ ðvc − vÞ − f2ðtÞ, where the unstable
region corresponds to a function f diverging in time t. This
simple model also explains the universality of the dynamics
on all sides of the bifurcation, which has been verified
numerically in [23].
The black-hole lasing effect.—In the following, we show

that the dynamical instability characterizing the GP saddle-
node bifurcation and, thereby, responsible for the superflow
decay, is due to the black-hole lasing effect, whose origin
is the presence of a black-hole–white-hole pair of sonic
horizons. For this purpose, we study perturbations on top of
the stationary solutions by means of the Bogoliubov-de
Gennes equation. The latter can be written in terms of the
flow velocity vðxÞ and local speed of sound cðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnðxÞ=mp

only [25]. Therefore, the excitation spectrum
and the presence and the nature of any instability are fully
governed by vðxÞ and cðxÞ. Remarkably, this property,
which allows for the mapping to the Klein-Gordon equa-
tion describing the propagation of a scalar field on a curved
spacetime [26], holds even when the local density descrip-
tion of the flow breaks down, i.e., even when the healing
length ξðxÞ ¼ ℏ=2mcðxÞ exceeds the barrier width.
As it appears from the lower right panel of Fig. 1, the S

solution always presents two sonic horizons at x ¼ �xs,
delimiting a compact supersonic region where the local
flow velocity exceeds the sound speed. Thus, the point
−xs < 0 such that vð−xsÞ ¼ cð−xsÞ behaves as the analog
of a black-hole horizon, in the sense that phonons cannot
propagate from the internal to the external region.
Similarly, the point þxs such that vðxsÞ ¼ cðxsÞ is the
analog of a white-hole horizon. In particular, when the
distance between the horizons is large enough, the spec-
trum of perturbations is enriched by additional propagating
modes characterized by a negative norm, thus, carrying
negative energy as seen by the laboratory reference frame
(the general case of arbitrarily small distance between
the horizons is discussed below). As shown in Fig. 1, the
Bogoliubov dispersion relation

ðω − vkÞ2 ¼ c2k2 þ ℏ2k4

4m2
ð2Þ

admits, indeed, only two real solutions of the wave number
k for each frequency ω in the subsonic region, correspond-
ing to two standard leftward and rightward propagating

FIG. 1 (color online). Upper left: dynamical phase diagram of
the saddle-node bifurcation characterizing the GP equation (1) at
fixed injected current. On the vertical axis, the density at the
barrier center is reported, distinguishing the PW solution from the
other stationary solution S. The arrows indicate the direction of
the dynamical evolution, separating a stable region converging
toward the PWattractor from an unstable region, delimited by the
unstable S solution, where no convergence is present. Lower row:
local flow velocity (red solid line) and sound speed (blue dotted
line) for the PW and S solutions at a given injected velocity
v ¼ 0.93vc, barrier height V0 ¼ 0.1gn∞, and width d ¼ 5ξ∞,
with ξ∞ being the healing length far away from the barrier.
Upper right panels: local dispersion relation ½ω − vðxÞk�2 ¼
cðxÞ2k2 þ ℏ2k4=4m2 of small amplitude modes in the subsonic
(left) and supersonic (right) region. The additional modes
appearing in the latter propagate back and forth and get amplified,
giving rise to the black-hole lasing dynamical instability.
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modes. Instead, in the supersonic region, it has four real
solutions for ω smaller than a certain threshold frequency
ωmax, two of them (open dots) lying on the negative-norm
branch of the dispersion relation. These bounded anoma-
lous modes give rise to anomalous transmission and
reflection, ultimately leading to a cavity amplification
effect generating a dynamical instability known as black-
hole laser effect [19–21,33–36]. More precisely, Hawking-
like phonons are emitted by the analog horizons x ¼ �xs
[37] due to the anomalous scattering of negative- and
positive-norm modes. These horizons act as amplifiers of
phonons [38], converting a negative-norm wave of unitary
amplitude into two negative- and positive-norm waves of
amplitudes α and β, respectively, with jαj2 − jβj2 ¼ 1 and
jαj > 1. Since the supersonic region is compact, the
negative-norm waves, one left going and one right going,
are trapped and can be interpreted as a single mode
bouncing back and forth between the two sonic points.
Consequently, the internal region acts as a resonant cavity
for this mode which exponentially grows being amplified
at any bounce on the sonic horizons. Formally, this leads
to the appearance of positive imaginary parts in the
Bogoliubov frequency spectrum.
However, when the horizons are close to each other, a

naive analysis of the dispersion relation Eq. (2) is not
sufficient to properly describe the properties of the spectrum
of these modes. Still, our results also apply to this case. As
shown below, one can, indeed, derive a generalized Bohr-
Sommerfeld quantization condition which fixes the number
of resonant negative-norm cavity modes, their frequencies,
and growing rates. Accordingly, negative energy modes can
appear only if at least one oscillation can be hosted within
the two classical turning points �xs of the Bogoliubov-de
Gennes equation. Thus, the presence of a region with
cðxÞ ≤ vðxÞ is necessary but not sufficient for existence
of negative energy modes. Remarkably, the appearance of
negative energy modes in a compact supersonic region has
been experimentally verifiedusingBragg spectroscopy [15].
In the following, we provide the main results of our

calculations, which are presented in detail in the
Supplemental Material (SM) [39]. We generalize the
methods developed in [20,21,43–45] for steplike flow
profiles with constant velocity to the physically relevant
configuration (see Fig. 1) discussed in the present Letter. It
can be shown that, when the fluid velocity is increased, the
first unstable mode appears at ω ¼ 0. When the flow is
symmetric with respect to x ¼ 0 (more general cases are
considered in the SM [39]), this implies that the flow is
unstable when

2m
ℏ

Z
xs

−xs
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðxÞ2 − cðxÞ2

q
≥ arg

β

α
: ð3Þ

The left-hand side of this inequality is the phase acquired by
a zero-frequency mode propagating across the supersonic

region. The right-hand side is, instead, associated to the phase
acquired by the mode when scattered at the sonic point.
The ratio of the two sides of this inequality is reported in

Fig. 2 for the PW (blue dots with solid line) and S solutions
(red dots with dashed line) in the hydrodynamic regime
(left panel) and for a delta barrier potential (right panel).
This ratio is always smaller than one for the PW solution,
which, therefore, never supports a cavity mode, while it is
greater than the one for the S solution, which, then, always
supports a cavity mode. The main result is that, at the
bifurcation point, both solutions reach the marginal con-
dition for the appearance of the cavity mode. Moreover,
the condition Eq. (3) allows for an analytical prediction of
the critical velocity vc corresponding to the bifurcation
point. In the case where the fluid velocity and the speed
of sound assume steplike profiles, i.e., v∞ ¼ vðjxj > xsÞ,
vbarr ¼ vðjxj < xsÞ and the same for cðxÞ, the results of
Ref. [43] are recovered and the critical injected velocity vc
is obtained by solving

2mxs
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2barr − c2barr

q
¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2barr − c2barr

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2∞ − v2∞

p
vbarrv∞ − λc2barr

;

ð4Þ

for v∞, and λ ¼ ½1þ lnðv∞=vbarrÞ�=½1 − lnðv∞=vbarrÞ�. The
most general formula valid for any smooth profile is
derived in the SM [39]. Note that the resulting critical
velocity depends on the barrier potential V and on the
coupling g only through the local sound speed and flow
velocity, according to the adopted analog gravity descrip-
tion. Since vðxÞ and cðxÞ always vary on scales larger than
or comparable to the healing length, this condition can be
applied even to very narrow potential barriers, as illustrated
in the right panel of Fig. 2 in the case of a delta potential.
As anticipated, the anomalous cavity modes are always

dynamically unstable, having positive imaginary parts Γn
of the complex eigenfrequencies. Typical results, computed
using the algorithm developed in Ref. [21] are presented in
Fig. 3. In the upper panels, the blue dots represent the value
of the cavity mode amplitude jBj2 as a function of energy ω
and for two different cavity lengths 2xs.

FIG. 2 (color online). Ratio between the left- and the right-hand
sides of Eq. (3) for the PW (blue dots with solid line) and
S (red dots with dashed line) solutions in the hydrodynamic
regime (left panel, parameters as in the lower panels of Fig. 1) and
for the delta barrier potential [right panels, V ¼ 0.1gn∞ξ∞δðxÞ].
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In the lower panel, the imaginary part is shown. As the
cavity width 2xs grows, the number of eigenfrequencies
increases while their imaginary parts vanish, such that the
spectrum becomes dense in the real interval ð0;ωmaxÞ.
Thus, for xs → ∞, phonons are spontaneously emitted for
all frequencies ω < ωmax, the emission rate is constant in
time (Γn ¼ 0), and the instability is energetic rather than
dynamical. In this limit, two different mechanisms can
excite the same continuous set of negative-energy modes:
(i) Hawking-like pairs of phonons are emitted from each of
the two far apart sonic horizons [25]; (ii) In the presence of
impurities, phonons are produced by Landau instability.
In this regime, achievable with a broad potential such that
2xs ≫ ξs, the critical condition corresponds to the flow
velocity reaching the sound speed inside the barrier region,
which, in our one-dimensional configuration, means
vðx ¼ 0Þ ¼ cðx ¼ 0Þ. This criterion has been numerically
verified in the hydrodynamic regime of the GP equation in
one [46], two [47–50], and three dimensions [51–53] and,
also, for a fermionic superfluid using the Bogoliubov-de
Gennes equations [54], as well as in the toroidal BEC
experiments of [10,12].
Conclusions.—By showing that the instability of the

one-dimensional BEC flow through a penetrable barrier is
due to the dynamical black-hole lasing effect, this work
builds a bridge between field theory in curved spacetime
and superfluidity. It provides a deeper insight into the
long-standing problem of supercurrent instability and also
identifies an experimental available setup as a natural
candidate for observing interesting physics of fluctuations
in curved spacetime.

In particular, we have shown that the behavior of the
system is governedby the configurationof the sonichorizons
and the (mis)match in the number of excitationmodes on the
two sides of them. This allowed us to provide a general
formula predicting the critical velocity and to characterize
the crossover between the dynamical black-hole lasing
instability and the Hawking energetic instability. The latter
coincides with the well-known Landau instability and is
achieved for broad enough barrier potentials.
The present analysis also allows for a suggestive

explanation of the known supercritical stationary flow,
found for velocities v∞ larger than a second higher critical
velocity [7,32,55]. For this stationary configuration, the
flow at the barrier is slower than outside. If v∞ is large
enough, the flow will be everywhere supersonic [32] and,
at low frequencies, there will be four propagating modes
both in the internal and the external regions [56]. If v∞ is
maintained supersonic but decreased below this higher
critical velocity, the internal region may become subsonic.
In this case, phonons are expected to be emitted with a
linearly growing rate, as suggested by studies in the context
of Lorentz violating quantum field theories [57].
Our study does not include the possibility for fluctuations

(thermal or quantum) to trigger the instability of the PW
branch before the critical saddle-node bifurcation point is
reached.However, theblack-hole lasing instability shouldbe
the relevant decaymechanism also in this case. Indeed, it has
been shown [58] that fluctuations lead the stable PW branch
to tunnel into the unstable S solution. It is the dynamical
instability of the latter, which we have shown to be due to
black-hole lasing, that leads to soliton emission.
An extension of this study to the two- or three-

dimensional flow, where a more complicated horizon
configuration appears, would be the object of future study.
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Note added.—Experimental evidence of black-hole laser
effect has been very recently reported by Jeff Steinhauer
in Ref. [59].
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FIG. 3 (color online). Upper panels: Squared modulus of the
amplitude B of the cavity mode (blue dots) for a unitary incoming
left-going wave for two values of the distance 2xs between the
sonic points (2xs=ξs ¼ 10, left; 2xs=ξs ¼ 50, right). Vertical lines
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and the shaded areas represent the intervals ðωn − Γn;ωn þ ΓnÞ.
Lower panel: Spectra for 2xs=ξs ¼ 10; 50; 100 (blue dots, green
diamonds, orange squares). For 2xs → ∞, Γn → 0 and the
spectrum becomes dense in the real interval ð0;ωmaxÞ.
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