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We propose a self-similar kinetic theory of thermal conductivity in a magnetized plasma, and discuss its
application to the solar wind. We study a collisional kinetic equation in a spatially expanding magnetic flux
tube, assuming that the magnetic field strength, the plasma density, and the plasma temperature decline as
power laws of distance along the tube. We demonstrate that the electron kinetic equation has a family of
scale-invariant solutions for a particular relation among the magnetic-, density-, and temperature-scaling
exponents. These solutions describe the heat flux as a function of the temperature Knudsen number γ,
which we require to be constant along the flux tube. We observe that self-similarity may be realized in the
solar wind; for the Helios data 0.3–1 AU we find that the scaling exponents for density, temperature, and
heat flux are close to those dictated by scale invariance. We find steady-state solutions of the self-similar
kinetic equation numerically, and show that these solutions accurately reproduce the electron strahl
population seen in the solar wind, as well as the measured heat flux.
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Introduction.—In a plasma where fðvÞ is the local
electron velocity distribution function, the heat flux q ¼R ðmv2=2Þvfd3v describes the flow of electron kinetic
energy [1]. Solving for q in terms of other bulk plasma
parameters (density, temperature) is important for under-
standing energy transport. In studies of the solar wind, the
heat flux is often prescribed as a step in obtaining profiles
for the solar wind speed [2,3], as a player in the steady-state
global energy balance [4], and as a source of free energy
that drives instabilities [5].
Spitzer and Härm [6] solved the kinetic equation for fðvÞ

in the presence of a temperature gradient, using perturba-
tion theory. This yielded an expression for the heat flux in
the absence of a net electric current:

qsh ¼ −κ∥∇∥T: ð1Þ

Here κ∥ ∝ T5=2 is the thermal conductivity parallel to the
magnetic field.
The Spitzer-Härm relation applies for collisional plas-

mas, where the collisional mean free path λmfp is suffi-
ciently small. The degree of collisionality is parametrized
by the temperature Knudsen number:

γ ¼ −T2ðd lnT=dxÞ=ð2πe4ΛnÞ ∼ λmfp=LT; ð2Þ

where LT ¼ jd lnT=dxj−1, Λ is the electron Coulomb
logarithm, and x is the direction of the temperature
variation. If γ ≪ 1, the plasma is collisional and Eq. (1)
applies, otherwise it is weakly collisional or collisionless
and the description of q becomes more complicated. In

particular, the Spitzer-Härm expansion is formally valid for
γ ≲ 0.01, while for larger values a population of “thermal
runaway” electrons may contribute to the heat flux [e.g.,
[7,8]]. Thus in a plasma with a temperature gradient, a
population of electrons is locally detected that originated
from distant, hotter regions. In the limiting case γ ≳ 1 the
collisionless or “free-streaming” heat flux is given by the
thermal energy density advected at the thermal speed,
q ∼ nvthT [7,9].
Laboratory and astrophysical applications, however,

require modeling the heat flux outside the limiting cases
discussed above. For example, the authors of [10] proposed
a formula, qðxÞ ¼ R

qshðx0Þwðx; x0Þdx0, that is widely used
in the laser-plasma interaction community [see, e.g.,
[11–13]]. The kernel wðx; x0Þ is a phenomenological
expression chosen so as to give results that match with
Fokker-Planck simulations of a weakly collisional plasma.
A more rigorous but mathematically involved approach
[14] employed a simplified kinetic equation in a 1D spatial
geometry, and expanded the perturbation from a
Maxwellian distribution in orthogonal polynomials. In
recent years, kinetic models of the solar corona and the
solar wind have been developed that include the effects of
Coulomb collisions [15–19]. In these models, detailed
radial profiles of the bulk plasma parameters are prescribed,
and the distribution function is found numerically.
Recent measurements of the electron distribution func-

tion made by the Wind satellite’s electrostatic analyzers
EESA-L and EESA-H [20] have revealed a functional
relationship between q and γ in the range of Knudsen
numbers 0.01≲ γ ≲ 1, where the analytic treatment of the
heat flux is especially complicated. This suggests that γ is
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the fundamental parameter needed to predict the heat flux
and the electron distribution function in the weakly colli-
sional solar wind.
In this work, we propose that the kinetic equation in a

magnetized plasma, where the large-scale parameters
(temperature, density, and magnetic field) exhibit power-
law behavior, has scale-invariant “self-similar” solutions.
These solutions are more transparent physically and easier
to construct numerically than standard perturbative solu-
tions. The requirement of scale invariance dictates that
γ ¼ const, a condition that is also consistent with solar
wind measurements.
The self-similar kinetic theory of heat conduction

was first proposed in [8], which allowed for calculation
of the electron distribution function in a nonmagnetic one-
dimensional case T ¼ TðxÞ, n ¼ nðxÞ [21]. A class of self-
similar steady-state solutions of the kinetic equation was
found in the form

fðv; xÞ ¼ NFðv=vthðxÞÞ=TðxÞα; ð3Þ

where N is a constant set by the normalizationR
fðvÞd3v ¼ n,

R
FðuÞd3u ¼ 1. The parameter α depends

on the relative scaling of density and temperature.
In this work, we develop a 3D self-similar kinetic theory

that includes a spatially expanding magnetic field B ¼
BðxÞx̂. We obtain the electron distribution function and
the heat flux as functions of the Knudsen number γ, and
demonstrate that they are in good agreement with solar
wind measurements. Our results provide an effective new
way of modeling electron physics in weakly collisional
astrophysical and space plasmas.
Self-similar kinetic equation for magnetized plasma.—

Consider a cylindrically symmetric magnetic flux tube,
expanding along the x̂ direction. When the plasma collision
rate is much smaller than the gyrofrequency, the time
evolution of the electron distribution function f is governed
by the drift kinetic equation [see, e.g., [22]]. We assume the
E ×B drift is negligible for the transport along the flux
tube. We also neglect the solar wind velocity vsw, since we
are interested in a weakly collisional case, γ ≳ 0.01, when
significant contribution to the heat flux comes from the
energetic electrons v≳ vth ≫ vsw. The drift kinetic equa-
tion can now be written in terms of t, x, v, μ (μ ¼ v · x̂=v),
and the collision operator ĈðfÞ:

∂f
∂t þ μv

∂f
∂x −

1

2

d lnB
dx

vð1 − μ2Þ ∂f∂μ
−
eE∥

m

�
1 − μ2

v
∂f
∂μ þ μ

∂f
∂v

�
¼ ĈðfÞ: ð4Þ

We now assume power-law variations of physical param-
eters in the x direction: B ∝ xαB , n ∝ xαn , T ∝ xαT . It can be
checked that the equation has a self-similar form in the case
γðxÞ≡ const. In what follows we are interested in the

steady-state case ∂f=∂t ¼ 0. As a result, Eq. (4) can be
rewritten in terms of the two dimensionless variables μ and
ξ ¼ ðv=vthÞ2 ≡mv2=ð2TÞ:

− γ

�
αμF þ μξ

∂F
∂ξ þ αB

2
ðαþ 1=2Þð1 − μ2Þ ∂F∂μ

�

þ γE

�
μ
∂F
∂ξ þ 1 − μ2

2ξ

∂F
∂μ

�
þ ĈðFÞ ¼ 0; ð5Þ

where γE ¼ E∥eT=ð2πe4ΛnÞ. Although the Landau colli-
sion operator can also be written in a self-similar form, for
simplicity we use the linearized collision operator, valid for
ξ ≫ 1, defining β≡ ð1þ ZeffÞ=2 for background ions with
total effective charge Zeff [23–25]:

ĈðFÞ ¼ 1

ξ

�∂F
∂ξ þ ∂2F

∂ξ2
�
þ β

2ξ2
∂
∂μ ð1 − μ2Þ ∂F∂μ : ð6Þ

The terms in ĈðFÞ with derivatives of ξ are due to energy
exchange with the thermal electrons, while the terms with
derivatives of μ describe pitch angle scattering from the
thermal electrons and ions. The requirements γ ¼ const and
the self-similar form of f [Eq. (3)] give the following
restriction for the allowed scaling powers α, αn, and αT :

α ¼ 3

2
−
αn
αT

¼ 1

αT
−
1

2
: ð7Þ

Interestingly, this relation has a solution n ∝ x−2 and
T ∝ x−1=2, which also implies q ∝ x−11=4 [[8], Eq. (5)].
Such profiles are close to the typically measured variations
of n; T; q with heliospheric distance [26–28].
Runaway electrons.—The presence of density and tem-

perature gradients in a magnetized plasma leads to the
formation of a runaway electron population (see, for
example, [7]). A spatially expanding magnetic field focuses
this population into a narrow field-aligned beam. In the
limit μ≈1, ξ ≫ 1 we approximate ð1 − μ2Þ ≈ 2ð1 − μÞ, and
neglect the energy exchange terms in the collision
operator. With the definitions z ¼ ξ2ð1 − μÞ, η ¼ ln ξ,
α0¼½2−ðαþ1=2ÞαB�, and F ¼ ϕðη; zÞ, Eq. (5) reduces to

γαϕþ γ
∂ϕ
∂η þ fγα0z − βg ∂ϕ∂z ¼ βz

∂2ϕ

∂z2 : ð8Þ

The solution of this advection-diffusion-type equation has
the form:

Fðξ; μÞ ∼ Cξα
0−α exp

�
γα0ξ2ð1 − μÞ

β

�
; ð9Þ

where the constant C can be found from matching with the
full solution at ξ ∼ 1. The full solution is constructed
numerically in the next section.
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Numerical solution.—Equation (5) can be solved once the
two parameters of the system, α and αB, are specified. This
equation has an important subfamily of solutions that can be
found numerically in a nonperturbative fashion. We use the
method of relaxation and add to the left-hand side of Eq. (5) a
time-dependent term ξ−1=2∂F=∂τ. We then would like to
view the time-dependent Eq. (5) as a formal Fokker-Planck
equation of some stochastic process (see, e.g., [29]). This is
possible to do if the norm of the function is preserved,R
F

ffiffiffi
ξ

p
dμdξ ¼ const. The norm preservation leads to the

extra condition on the allowed parameters, αB ¼ ð2 − αÞ=
ðαþ 1=2Þ, which defines the one-parameter subfamily of
solutions.
For a particular illustration, consider a radially expanding

magnetic flux tube, saymodeling the inner heliosphere, with
αB ¼ −2. In this case, the other scaling exponents are found
as α ¼ −3, and αn ¼ −1.8, αT ¼ −0.4, which are roughly
consistent with power laws observed in the solar wind, as
discussed in previous sections. Defining the function
ψðμ;ξ;τÞ≡ξ1=2F, the evolution equation can be rewritten as

∂ψ
∂τ ¼ ∂

∂ξ
�
−γμξ3=2ψ þ γEμ

ffiffiffi
ξ

p
ψ þ ψffiffiffi

ξ
p

�

þ ∂
∂μ

��
−
5

2
γð1 − μ2Þ

ffiffiffi
ξ

p
þ γEð1 − μ2Þ

2
ffiffiffi
ξ

p þ βμ

ξ3=2

�
ψ

�

þ ∂2

∂ξ2
ψffiffiffi
ξ

p þ ∂2

∂μ2
�
βð1 − μ2Þ
2ξ3=2

ψ

�
: ð10Þ

The function ψ can be constructed using the Langevin
method. In this method, the μ − ξ phase space is populated
by a large number of points, each evolving according to the
stochastic ordinary differential equations:

dξ
dτ

¼ γμξ3=2 − γEμ
ffiffiffi
ξ

p
−

1ffiffiffi
ξ

p þ
ffiffiffi
2

p

ξ1=4
νξðτÞ; ð11Þ

dμ
dτ

¼ 5

2
γð1 − μ2Þ

ffiffiffi
ξ

p

−
γEð1 − μ2Þ

2
ffiffiffi
ξ

p −
βμ

ξ3=2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1 − μ2Þ

p
ξ3=4

νμðτÞ; ð12Þ

where νξðτÞ, νμðτÞ are normally distributed independent
random variables (random noises) with mean of zero and
standard deviation of hνξðτÞνξðτ0Þi¼hνμðτÞνμðτ0Þi¼δðτ−τ0Þ.
Equations (11)–(12) are solved using the forward Euler
finite-difference method with the Ito prescription for
the noise discretization [29], setting β ¼ 1. The electric
field γE is adjusted at each time step so as to nullify the
current

R
ξmax ψμξ1=2dξdμ, where we choose ξmax>>1, see

“Discussion and Conclusions. The function ψðμ; ξÞ is
approximated by a 2D histogram of the points in phase
space with the normalization π

R
ψðμ; ξÞdξdμ ¼ 1. The

simulation is initialized with a Gaussian distribution, and a

quasi-steady state is reached at time τ ∼ 1, whose amplitude
decreases very slowly afterwards in the region ξ < ξmax.
Applications to the solar wind.—The solar wind electron

velocity distribution function (eVDF) was measured at
heliocentric distances 0.3–1 AU by the E1 plasma experi-
ment onboard the Helios 1 satellite [30]. We fit each eVDF
in our data set to a function fmðv⊥; v∥Þ ¼ fc þ fh þ fs,
which represents a sum of the well-known core, halo, and
strahl subpopulations [26]. We adopt a bi-Maxwellian fc,
bi-kappa fh [31], and a modified bi-kappa function fs that
is diminished on one side [32]. We disallow perpendicular
bulk drifts, v⊥;c ¼ v⊥;h ¼ v⊥;s ¼ 0. Our fitting procedure
is described in detail in [33].
For each measured Helios eVDF, γ is computed from

Eq. (2), where T and n are the core values Tc, nc obtained
from the least-squares fit. Since the parallel and
perpendicular core temperatures may differ, we define
T ≡ Tc ¼ ðTc∥ þ 2Tc⊥Þ=3. In order to calculate dT=dx
from our measurements, we must prescribe how x varies
with heliocentric distance r. We assume that the flux tube
follows the average Parker spiral: xðrÞ ¼ R

dr= cos θP,
where tan θPðrÞ ¼ r=r0 and r0 ¼ 1 AU [34]. We can then
fit a power law to our observed TðxÞ, which yields
αT ¼ −0.6� 0.1. To verify our assumption γ ≈ const,
we plot a 2D histogram of γ versus r in Fig. 1. At all
distances 0.3–1 AU the most probable value is γ ≈ 0.2.
In Fig. 2, we plot parallel and perpendicular cuts of the

distribution function obtained from the Helios data and
from our solution. Because the E1 detector has a broad
field of view, it tends to smear out narrow features in the
distribution function such as the strahl; we denote the
resulting convoluted (self-similar) function as F�ðv=vthÞ.
In order to model F� using our numerical solution
F of Eq. (5), we apply the convolution F�¼
½RRðϕ;θÞFdΩ�=RRðϕ;θÞdΩ, where Rðϕ;θÞ¼½HðϕþΔϕÞ−
Hðϕ−ΔϕÞ�expf−½ðθ−π=2Þ=Δθ�2g and H is the Heaviside

FIG. 1 (color online). 2D histogram of γ versus heliocentric
distance r, derived from fits to Helios eVDF data. Each column is
normalized by its peak, to bring out the functional dependence.
We observe γðrÞ ≈ const, required in order to apply the self-
similar theory.
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step function. Here ϕ and θ are spherical coordinates in the
Helios spacecraft frame, where the rotation axis defines the
z direction; the nominal look direction of the detector
(μ ¼ 1; 0 for parallel, perpendicular cuts) corresponds with
ϕ ¼ 0, θ ¼ π=2. In accordance with the detector descrip-
tion [26], we set Δϕ ¼ 15°, Δθ ¼ 11.4°. We plot cuts of F�
from the numerical solution of our model as dots in Fig. 2,
for γ ¼ 10−3=2; 10−5=4; 10−1.
The function F� is computed from each observed Helios

distribution function fm using F�ðv=vthÞ ¼ fmðvÞv3th=n
(note that N ¼ nTα=v3th, from the normalization of F).
We take the parallel and perpendicular cuts of F� obtained
from our fits to the Helios data, and average them into three
logarithmically spaced bins in the interval 10−13=8 <
γ < 10−7=8. These are plotted as lines in Fig. 2. We see
good agreement between the data and theory in the core, as
should be expected, but also a striking agreement in the
strahl population. The halo population appears not to be
described by our solutions.
The recent results of [20], which demonstrate the

transition between the Spitzer-Härm-like and collisionless

heat flux regimes in the solar wind at 1 AU, are repro-
ducible with the Helios data measured 0.3–1 AU. We
adopt the same definitions: q0 ¼ ð3=2ÞnvthT [35], qsh ¼
3.16nTτe=m [6,36], qsh=q0 ¼ 1.07λmfp=LT ¼ 2.84γ [37].
We plot a 2D histogram of the variation of q=q0 with
λmfp=LT in Fig. 3. For reference, we show the Spitzer-
Härm-like scaling as a solid line.
The dots in Fig. 3 are predictions of our model. For each

steady-state distribution F, a dimensionless heat flux can be
calculated Q≡ R

u∥u2FðuÞd3u, where u ¼ v=vth. From
our definitions it can be quickly derived q=q0 ¼ 2Q=3.
Using this and λmfp=LT ¼ 2.656γ gives the coordinates of
the dots in Fig. 3. Our theory is consistent with the heat flux
measurements.
Discussion and conclusions.—We have demonstrated

that in a magnetic flux tube where γðxÞ ¼ const and the
density, temperature, and magnetic fields vary as power
laws, the steady-state electron kinetic equation admits
solutions Fðμ; ξÞ that depend on just two self-similar
variables. We found that the electron distribution functions
measured by the Helios satellite closely match many of the
predictions of our theory. Most notably, the theory is able to
describe the transition from the Spitzer-Härm-like to the
collisionless regime, recently observed by [20] in the
interval 0.01≲ γ ≲ 1. It also shows that the strahl pop-
ulation consists of thermal runaway electrons that origi-
nated from hotter, denser regions, which are focused by the
magnetic field. We note that the halo population does not
follow the self-similar solution; it is observed to vary in a
non-self-similar fashion in the inner heliosphere, while self-
similarity is a better approximation for the strahl (Fig. 5 in
[31]), (Fig. 6 in [32]). Physics beyond the scope of this
Letter may be required to explain the halo.
For finite systems, it is necessary to restrict the domain of

self-similarity to a range in energy ξ < ξmax, since runaway

FIG. 2 (color online). Perpendicular and parallel cuts of F�
from the Helios measurements (lines) and Langevin simulations
(dots). The Helios data are averaged into logarithmically spaced
bins 10−13=8 < γ < 10−7=8. The numerical solutions are found
with γ chosen at the logarithmic center of a bin.

FIG. 3 (color online). 2D histogram of q=q0 versus heliocentric
distance λmfp=LT , derived from fits to Helios eVDF data,
correcting for the Parker spiral angle and assuming
αT ¼ −2=5. Each column is normalized by its peak, to bring
out the functional dependence. The Spitzer-Härm prediction
is shown as a line. Results of our numerical solutions are
shown as dots.
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strahl electrons can only be supplied up to energies
comparable to the thermal energy at the higher temperature
boundary (such an effect may be witnessed in the simu-
lations of [18], Fig. 5). Restricting the self-similar energy
domain is also necessary from a theoretical standpoint [8]:
multiplying Eq. (9) with μξ3=2 and integrating up to infinite
energies, we find that the heat flux formally diverges for our
assumed parameters. The temperatures at the coronal base
are about 20 times higher than in the solar wind at 1 AU.
We set ξmax ¼ 50 when calculating q in Fig. 3, which
realistically captures the extent of the strahl observed by
Helios. For comparison, the upper and lower error bars
indicate the heat flux computed by using ξmax ¼ 100 and
ξmax ¼ 25, respectively.
In general, Eq. (5) admits a two-parameter family of

solutions, parametrized by the scaling exponent of the
magnetic field and the temperature along the flux tube.
Depending on these parameters, other solutions may
provide a better match to different laboratory or astro-
physical systems. We plan to study the solutions of Eq. (5)
in fuller generality elsewhere.
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