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We introduce a method to achieve the three-dimensional dynamic localization of light. We consider a
dynamically modulated resonator lattice that has been previously shown to exhibit an effective gauge
potential for photons. When such an effective gauge potential varies sinusoidally in time, dynamic
localization of light can be achieved. Moreover, while previous works on such an effective gauge potential
for photons were carried out in the regime where the rotating wave approximation is valid, the effect of
dynamic localization persists even when the counterrotating term is taken into count.
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The effect of dynamic localization is of fundamental
importance in understanding coherent dynamics of a
charged particle in a periodic potential. When such a
charged particle is, in addition, subjected to a time-
harmonic external electric field, the wave function of the
particle can become completely localized [1,2]. This effect
has been studied in a number of systems [3–13], and
has been demonstrated in experiments involving a Bose-
Einstein condensate or optical lattices [14,15].
Localization of a photon, especially in the full three

dimensions, is of great practical and fundamental impor-
tance for the control of light [16,17]. Anderson localization
[18] of light, which uses disordered but time-independent
photonic structures, has been extensively explored [19–21].
Dynamic localization of light, which uses ordered but time-
dependent structures, provides a significant alternative.
The photon is a neutral particle; thus, there is no naturally
occurring time-harmonic electric field that couples to the
photon. To achieve dynamic localization of the photon, one
therefore needs to synthesize an effective electric field. Up
to now, extensive experimental and theoretical works have
focused on light propagation in a waveguide array, where
the effect of dynamic localization manifests by analogy as
the cancellation of diffraction when the array is modulated
in space along the propagation direction [22–27]. There
has not been, however, any demonstration of a true three-
dimensional localization of light in a photonic structure
undergoing time-dependent modulation.
In this Letter, we show that the concept of photonic

gauge potential provides a mechanism to achieve the
dynamic localization of light in the full three dimensions.
It has been theoretically proposed [28] and experimentally
demonstrated [29–31] that when the refractive index of a
photonic structure is modulated in time sinusoidally, the
phase of the modulation corresponds to an effective gauge
potential for photon states [32–35]. References [28–35]
utilized this correspondence to create a spatially inhomo-
geneous, but time-invariant gauge potential distribution, in

order to study effects associated with an effective magnetic
field for photons, including the photonic Aharnov-Bohm
effect [28,29,31], and the photonic analogue of the integer
quantum hall effect [32]. In contrast, here we create a gauge
potential that is spatially homogenous or periodic, but
temporally varying. We show that such a time-dependent
gauge potential naturally leads to a time-varying effective
electric field for photons, which can be used to create a
three-dimensional dynamic localization of light. Moreover,
while Refs. [28,32–35] have only considered the regime
where the rotating wave approximation is valid, here we
show that such dynamic localization persist even when the
counterrotating term is taken into account.
We start with the same model system as discussed

in detail in Refs. [32,33], consisting of either a one-
dimensional or three-dimensional photonic resonator lattice
as shown in Fig. 1. The lattice consists of two types of
resonators (A and B) with frequencies ωA and ωB, respec-
tively. The Hamiltonian of the system is

H ¼ ωA

X
m

a†mam þ ωB

X
n

b†nbn

þ
X
hmni

V cos½Ωtþ ϕmnðtÞ�ða†mbn þ b†namÞ; ð1Þ

where V cos½Ωtþ ϕmnðtÞ� is the coupling strength between
the nearest-neighbor resonators. Ω ¼ ωA − ωB. ϕmn is the
phase of the coupling strength modulation. In this Letter,
we will consider the situations where such a modulation
phase itself is modulated in time, and refer to such
modulation of the phase ϕmn as the phase modulation.
a† (a) and b† (b) are the creation (annihilation) operators in
the A and B sublattice, respectively.
We note that Eq. (1) can be derived from Maxwell’s

equations in three dimensions. The derivation is provided in
the Supplemental Material [36]. The key point here is that
one can construct a vectorial modal basis upon which the
three-dimensional electromagnetic fields can be expanded.
The dynamics of the modal expansion coefficients can then
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be described in the form that is reminiscent of the
Schrödinger equation with a tight-binding Hamiltonian,
which forms the starting point of our investigation. This
technique has been previously used in the literature to
account for three-dimensional FDTD numerical simulations
[37,41–43] and actual experiments [44].
In the limit V ≪ Ω, the rotating wave approximation is

valid. Therefore, we can simplify the Hamiltonian and
rewrite it in the rotating frame [32]

H ¼
X
hmni

V
2
ðe−iϕmnðtÞc†mcn þ eiϕmnðtÞc†ncmÞ; ð2Þ

where cmðnÞ ¼ eiωAðBÞtamðbnÞ. In general, such a system has
a dynamic effective gauge field [32]

~Aeff
mn ¼ l̂mnϕmnðtÞ=a; ð3Þ

where l̂mn is a unit vector and a is the distance between
two nearest-neighbor sites. Here, however, we choose the
modulation phases such that in Eq. (2), all bonds along the
same direction have the same phase; e.g., all bonds along
the x direction have the same phase, ϕxðtÞ. In the three-
dimensional case, ϕyðtÞ and ϕzðtÞ are similarly defined.
Since the phases are uniform in space, the system has zero
effective magnetic field.
We now show that with a proper choice of the

time dependency of these phases, we can achieve
dynamic localization. As an illustration we consider the
one-dimensional case in some detail. The three-dimensional
case naturally follows. In the one-dimensional case, as an
intuitive analysis, we can write the Hamiltonian, Eq. (2), in
the wave vector space (k space)

H ¼
X
kx

Vc†kxckx cos½kxa − ϕxðtÞ�: ð4Þ

Hence, the system has an instantaneous photonic band
structure ωðkxÞ ¼ V cos½kxa − ϕxðtÞ� ¼ V cos½ðkx − AxÞa�.
The effect of a spatially uniform photonic gauge potential is
a shift of the band structure in k space [33,35]. Since the
structure maintains translational invariance, the wave vector
kx is a conserved quantity throughout the modulation
process. The group velocity of the wave packet of the
photon with wave vector kx is given by

vgðkxÞ ¼
∂ωðkxÞ
∂kx ¼ −Va sin½kxa − ϕxðtÞ�: ð5Þ

At different values ofϕx, the group velocity at the samewave
vector can have either positive or negative signs.
To demonstrate dynamic localization, we choose a phase

modulation of the form ϕxðtÞ ¼ α cosðωMtÞ, where α and
ωM are the amplitude and the frequency of the phase
modulation, respectively. Thus, the average group velocity
over one phase-modulation period 2π=ωM is

hvgðkxÞi ¼ −Va sinðkxaÞJ0ðαÞ; ð6Þ

where J0 is the zeroth-order Bessel function by choosing α
be to a zero of J0, the average group velocity is zero for
all kx. Thus, all wave packets of the system become
localized, signifying the presence of dynamic localization.
Importantly, the condition for dynamic localization here
is related to the strength of the phase modulation, and is
independent of the phase-modulation frequency, ωM.
We confirm the intuitive analysis above, based on the

instantaneous band structure, by a rigorous numerical
calculation of the Floquet eigenstates of the Hamiltonian
in Eq. (1). In this numerical analysis, we use the
Hamiltonian of Eq. (4), and directly compute the quasie-
nergy ε at each kx, following the same procedure as in
Refs. [2,45,46]. The resulting ε as a function of phase-
modulation strength α, for different kx’s, are plotted in
Fig. 2. At each α, the range of the values of the quasienergy
indicates the bandwidth of the quasienergy band structure.
The onset of the dynamic localization corresponds to the
collapse of the bandwidth. In Fig. 2, we indeed observe the

FIG. 1 (color online). A one-dimensional (a) and a three-
dimensional (b) photonic resonator lattice with two kinds of
resonators with frequency ωA (red dots) and ωB (blue dots).
The nearest-neighbor coupling is dynamically modulated and the
phase of the coupling constant modulation itself can be time
dependent with the signs being flipped between two neighboring
bonds. The lattice is assumed infinite in all directions.

FIG. 2 (color online). The quasienergies as a function of α, for
the Hamiltonian of Eq. (4), with ϕxðtÞ ¼ α cosðωMtÞ. Here we
choose V ¼ 0.2ωM. Each curve corresponds to a different wave
vector kx, in the range, −π=a < kx < π=a.
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collapse of bandwidth when the phase-modulation strength
approaches each of the zeros of J0.
For the study of electronic dynamic localization, the

effect of a time-varying electric field is typically described
through the use of a spatially nonuniform scalar potential,
as described by a Hamiltonian [1,2]

~H¼
X
hmni

V
2
ðc†mcnþc†ncmÞ−

X
n

nαωM sinðωMtÞc†ncn: ð7Þ

In contrast, we have used a vector potential that is spatially
periodic. Our Hamiltonian of Eq. (2) is in fact equivalent to
Eq. (7) by a gauge transformation:

jΨi¼
X
n

vnc
†
nj0i→ j ~Ψi¼

X
n

~vnc
†
nj0i¼

X
n

vneiθnc
†
nj0i; ð8Þ

where jΨi satisfies the Schrödinger equation, ið∂=∂tÞjΨi¼
HjΨi or i _vn ¼ ðV=2Þ½e−iα cosðωMtÞvnþ1 þ eiα cosðωMtÞvn−1�.
With a gauge choice of θn ¼ −nα cosðωMtÞ, the gauge-
transformed state j ~Ψi then satisfies

i
∂
∂t j ~Ψi¼

X
n

i _vneiθnc
†
nj0i−

X
n

vn _θneiθnc
†
nj0i

¼ V
2

X
n

½e−iαcosðωMtÞvnþ1þeiαcosðωMtÞvn−1�eiθnc†nj0i

−
X
n

vn _θneiθnc
†
nj0i

¼ V
2

X
n

½vnþ1eiθnþ1 þvn−1eiθn−1 �c†nj0i

−
X
n

nαωM sinðωmtÞvneiθnc†nj0i

¼ ~Hj ~Ψi; ð9Þ
where ~H is given in Eq. (7). Therefore, the two
Hamiltonians of Eqs. (2) and (7) are indeed equivalent
to each other, as they are related by a gauge transformation.
A similar gauge transformation has been used in the study
of waveguide array [22]. Certainly, a time-varying gauge
potential for an electron is related to an electric field applied
on the electron. Here, we have shown that a time-varying
effective gauge potential for a photon also analogously
produces an effective electric field applied on the photon.
Unlike the waveguide array approach, where the effect of

photonic dynamic localization manifests through an anal-
ogy as the cancellation of diffraction in a static structure, in
our approach here one can directly achieve dynamic photon
localization in all three dimensions. We consider the
Hamiltonian of Eq. (1) for the three-dimensional lattice
as shown in Fig. 1(b). We choose the phase modulation
ϕx;y;zðtÞ ¼ α cosðωMtÞ. The intuitive derivation of dynamic
localization condition [Eqs. (5)–(6)] can then be straight-
forwardly generalized to the full three dimensions. Full
three-dimensional dynamic localization is achieved pro-
vided that the modulation strength above is chosen to be a
zero of the J0, for all choices of the phase-modulation
frequency, ωM.

Similar to the one-dimensional case, the intuitive deri-
vations for dynamic localization for three dimensions can
be confirmed by a rigorous Floquet analysis showing band
collapse. Instead, here we provide the evidence of a full
three-dimensional dynamic localization, by a direct simu-
lation of photon dynamics in a 40a × 40a × 40a three-
dimensional lattice. The simulation is done by solving the
coupled-mode equation [34]

idjΨðtÞi=dt ¼ HðtÞjΨðtÞi: ð10Þ
Here jΨi ¼ ½PmvmðtÞa†m þP

nvnðtÞb†n�j0i gives the
photon state with the amplitude at site mðnÞ described
by vmðnÞðtÞ. HðtÞ is the time-dependent Hamiltonian of
Eq. (1). The initial wave packet of the photon at t ¼ 0
has the form jΨð0Þi¼Q

η¼x;y;z exp½−ðη−η0Þ2=w2þ ikηη�,
where ðx0; y0; z0Þ is the center of the wave packetwithwaist
w. The results are plotted in Fig. 3. In the absence of phase
modulation, Fig. 3(a) shows the initial wave packet of the
photon. Thewave packet propagates freely in the spacewith
time and reaches to the corner of the lattice at t ¼ 1.25a=c
[see Fig. 3(b)]. In contrast, in the presence of phase
modulation with a choice of the amplitude α ¼ 2.40483
and frequency ωM ¼ 1.5c=a, the wave packet of the
photon is localized near its initial position throughout the
entire duration of the simulation. This is demonstrated in
Figs. 3(c) and 3(d), which show the wave packet’s positions
at t ¼ 1.25a=c and t ¼ 5a=c, respectively. The simulation
here provides a direct visualization of the dynamic locali-
zation process in three dimensions.
Up to this point we have used the rotating wave approxi-

mation for the Hamiltonian in Eq. (1). Previous discussions

FIG. 3 (color online). Propagation of a photon wave packet in a
40a × 40a × 40a three-dimensional lattice. (a) The initial con-
dition at t ¼ 0, with x0 ¼ y0 ¼ z0 ¼ 20a and kx ¼ −ky ¼
−kz ¼ −1.283a−1. (b) The wave packet at t ¼ 1.25a=c with
no phase modulation. (c) and (d) The wave packet at t ¼ 1.25a=c
and t ¼ 5a=c, respectively, with phase modulation. The param-
eters of the phase modulation are α ¼ 2.40483 and ωM ¼ 1.5c=a.
The coupling strength between the resonators is V ¼ 2.4πc=a.
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on the photonic gauge field in this Hamiltonian have all
assumed the rotatingwave approximation.On the other hand,
in the experimental demonstration of the photonic gauge field
one often uses electro-optic modulation of the refractive
index [30]. Inmany electro-opticmodulations, the strength of
the modulation, as measured in δn=n × ω0, where n is the
refractive index of the structure, δn is the index change, and
ω0 is the operating frequency, can be much larger than the
modulation frequencyΩ on the order of a fewGHz; therefore,
it is important to understand thevalidity of thegauge potential
concept beyond the rotating wave approximation. Here we
show that the dynamic localization effect persists even in the
regime where the rotating wave approximation is not valid.
We provide the results in one dimension. The generaliza-

tion to three dimensions is straightforward. For the treatment
beyond the rotating wave approximation, we again start by
providing an intuitive treatment based on the instantaneous
band structure. We then confirm the intuitive treatment
through an exact numerical analysis of the Floquet band
structure.TheHamiltonian,Eq (1), canbewritten ink space as

H ¼
X
kx

ðωAa
†
kx
akx þ ωBb

†
kx
bkxÞ þ

X
kx

Va†kxbkx

× feiΩt cos½kxaþ ϕxðtÞ� þ e−iΩt cos½kxa − ϕxðtÞ�g
þ H:c: ð11Þ

Performing the transformation, ckx ¼ eiωAðBÞtakxðbkxÞ, we
obtain

H ¼
X
kx

Vc†kxckxfcos½kxa − ϕxðtÞ�

þ cosð2ΩtÞ cos½kxaþ ϕxðtÞ�g: ð12Þ
We notice that the first term is the same as Eq. (4) and the
second term is the counterrotating term. FromEq. (12)we can
straightforwardly obtain the instantaneous band structure and
hence the instantaneous group velocity at a wave vector kx,
since the Hamiltonian in the presence of the counterrotating
term is still periodic in real space. Again, assuming that
the modulation phase ϕx ¼ α cosðωMtÞ, the average group
velocity over one phase-modulation period (2π=ωM) is

hvgðkxÞi¼−VasinðkxaÞJ0ðαÞ

−Va
ωM

2π

Z
2π=ωM

0

dtcosð2ΩtÞsin½kxa−αcosðωMtÞ�:

ð13Þ
To facilitate the analytic calculation, we assume that

2Ω ¼ nωM; ð14Þ
where n is a positive integer, and the second term in Eq. (13),
denoted as hvgðkxÞiCR, can be calculated analytically as

hvgðkxÞiCR ¼ Va×

�ð−1Þmþ1 sinðkxaÞJnðαÞ n¼ 2m

ð−1Þm cosðkxaÞJnðαÞ n¼ 2mþ 1.

ð15Þ
By choosing α ¼ 2.40483, which corresponds to J0ðαÞ ¼ 0,
the first term in Eq. (13) vanishes. And the correction due to

the second term can be made arbitrarily small by choosing a
sufficiently large n in Eq. (14), i.e. by choosing the phase-
modulation frequency to be sufficiently small as compared
to the frequency of coupling strength modulation. Thus,
dynamic localization can still be accomplished in the regime
where rotating wave approximation no longer applies. This
result can be straightforwardly generalized to three dimen-
sions. Three-dimensional dynamic localization should occur
when 2Ω ¼ nωM, provided that all bonds along each direc-
tion has the same phase ϕx;y;zðtÞ ¼ α cosðωMtÞ with the
phase-modulation amplitude α being a zero of J0.
We confirm the intuitive analysis above by calculating

the Floquet band structure in the case where V ¼ 0.2Ω,
and hence the rotating wave approximation is no longer
valid (blue lines in Fig. 4), and by comparing such
calculations to the prediction of the range of quasienergies
with the rotating wave approximation (red lines in Fig. 4).
Figure 4(a) shows the case with Ω ¼ 2ωM. Introducing the
counterrotating term indeed modifies the band structure.
Nevertheless, the bandwidth still collapses near a phase-
modulation strength of α ¼ 2.40483. Thus, dynamic locali-
zation still occurs in this system beyond the rotating wave
approximation. Figure 4(b) shows the case with Ω ¼ 4ωM.
Comparing Figs. 4(a) and 4(b), we observe that the
discrepancy in the band structures between the cases with
or without rotating wave approximation becomes smaller as
ωM is reduced, in spite of the fact that with V ¼ 0.2Ω we
are significantly outside the regime where the rotating wave
approximation is valid. This observation is consistent with
the analytic results derived above based on instantaneous
band structure.
Experimentally, the effective gauge field for photons has

already been experimentally observed using twomodulators
[30]. The demonstration of the theoretical proposal here
requires further integration of larger numbers ofmodulators.

(a)

(b)

FIG. 4 (color online). Quasienergies as a function of phase-
modulation strength α, for the Hamiltonian of Eq. (12), with
ϕxðtÞ ¼ α cosðωMtÞ. V ¼ 0.2Ω. (a) Ω ¼ 2ωM. (b) Ω ¼ 4ωM.
Each blue curve corresponds to a different wave vector kx, in the
range of −π=a < kx < π=a. The dashed red line is the envelope
for the same Hamiltonian, but calculated using the rotating wave
approximation.
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The experimental feasibility of such integration has been
discussed in Ref. [32]. While for illustration purpose we
have focused on a photonic gauge potential through the use
of temporal refractive index modulation, the concept here
should be relevant for other proposals of photonic gauge
potential as well, include those based on magneto-optical
effects [47,48], as well as spin-dependent photonic gauge
potential [49–53] and optomechnanical gauge potential
[54,55]. In summary, we have shown that three-dimensional
dynamic localization of light can be achieved with an
effective gauge potential for photons. The results provide
additional evidence of the exciting prospects of photonic
gauge potential for the control of light propagation.
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Office of Scientific Research Grant No. FA9550-09-1-0704
and the U.S. National Science Foundation Grant
No. ECCS- 1201914.
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