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QCD perturbation theory ignores the compact nature of the SUð3Þ gauge group that gives rise to the
periodic θ vacuum of the theory. We propose to modify the gluon propagator to reconcile perturbation theory
with the anomalousWard identities for the topological current in the θ vacuum. As a result, the gluon couples
to the Veneziano ghost describing the tunneling transitions between different Chern-Simons sectors of the
vacuum; we call the emerging gluon dressed by ghost loops a “glost.”We evaluate the glost propagator and
find that it has the form GðpÞ ¼ ðp2 þ χtop=p2Þ−1 where χtop is the Yang-Mills topological susceptibility
related to the η0 mass by theWitten-Veneziano relation; this propagator describes the confinement of gluons at
distances∼χ−1=4top ≃ 1 fm. The same functional form of the propagator was originally proposed byGribov as a
solution to the gauge copies problem that plagues perturbation theory. The resulting running coupling
coincideswith the perturbative one atp2 ≫ ffiffiffiffiffiffiffi

χtop
p , but in the infrared region either freezes (in pureYang-Mills

theory) or vanishes (in full QCDwith light quarks), in accordwith experimental evidence. Our scenariomakes
explicit the connection between confinement and topology of the QCD vacuum; we discuss the implications
for spin physics, high energy scattering, and the physics of quark-gluon plasma.
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QCD possesses a compact gauge group that allows for
topologically nontrivial gauge field configurations. These
configurations realize homotopymaps from the gauge group
to the space-time manifold. For example, the homotopy map
from theSUð2Þ subgroupof thegaugegroup to theEuclidean
space-time sphere S3 describes the instanton solution [1].
However, the compactness of the gauge group is ignored in
perturbation theory, and this may be at the origin of problems
marring the perturbative approach.
In QCD, one of these problems is the existence of Gribov

copies [2]—multiple solutions of the gauge-fixing condition
that make the perturbative approach ambiguous. In the
Coulomb gauge, the emergence of Gribov copies can be
traced back to the existence of energy-degenerate vacuawith
different Chern-Simons numbers [3]. A natural question
arises—is it possible to formulate QCD perturbation theory
in away that is consistentwith the topological structure of the
theory? In thisLetterwe argue that the answer to this question
is positive. We find that the resulting gluon propagator
naturally describes confinement, i.e., nonpropagation of
color degrees of freedom, and the running coupling displays
the screening of color charge at large distances.
In Minkowski space-time, instanton solutions represent

the tunneling events connecting the degenerate vacuum
states with different Chern-Simons numbers

XðtÞ ¼
Z

d3xK0ðx; tÞ; ð1Þ
where K0 is the temporal component of topological current

Kμ ¼
g2

16π2
ϵμνρσAν;a

�
∂ρAσ;a þ 1

3
gCabcAρ

bA
σ
c

�
; ð2Þ

thefirst terminK0 is thedensityofAbelian“magnetichelicity”
while the second term is its non-Abelian generalization.
The chiral anomaly in QCD leads to nonconservation of

the axial current

∂μJ
μ
A ¼ 2NfQðxÞ þ

X
f

ð2imfÞq̄fγ5qf; ð3Þ

where mf are the masses of quarks, Nf is the number of
flavors, and

QðxÞ ¼ g2

32π2
FμνðxÞ ~FμνðxÞ ð4Þ

is the density of topological charge normalized byR
d4xQðxÞ ¼ ν; for finite action field configurations ν is

an integer. The density of topological charge can be
represented as a divergence QðxÞ ¼ ∂μKμ of the gauge-
dependent current (2).
Veneziano [4] has demonstrated that the periodic

θ-vacuum structure in QCD can be captured by introducing
a massless “ghost” in the correlation function of the gauge-
dependent topological current (2):

KμνðqÞ≡ i
Z

d4xeiqxhKμðxÞKνð0Þi→
q2≪μ2

−
μ4

q2
gμν; ð5Þ

where μ4 ≡ χtop is the topological susceptibility of pure
Yang-Mills theory. Note that the rhs of Eq. ([4]) has the
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“wrong” sign; i.e., the ghost does not describe a propa-
gating degree of freedom. This means that the ghost cannot
be produced in a physical process; however, the couplings
of the ghost (that describe the effect of topological
fluctuations) certainly can affect physical amplitudes. A
similar “dipole” ghost had been earlier introduced by Kogut
and Susskind [5] in the analysis of axial anomaly in the
Schwinger model. This procedure has been demonstrated
to solve the UAð1Þ problem in QCD [6,7].
The physical meaning of Eq. ([4]) becomes apparent if

one compares it to the correlation function of the electron’s
coordinate xðtÞ in a crystal [8]:

i
Z

dteiωthTfxðtÞxð0Þgi→ω→0
−

1

ω2m� ¼−
1

ω2

∂2EðkÞ
∂k2

����
k¼0

;

ð6Þ
where E ¼ k2=2m� is the energy of an electron with an
effective mass m� and quasimomentum k in a crystal. The
emergence of the pole in Eq. (6) signals the possibility of
electron’s propagation in the periodic potential of the
crystal due to tunneling. Note that the pole emerges not
just from a single tunneling event (corresponding to the
instanton in QCD), but sums up the effect of many
tunnelings throughout the crystalline lattice.
The analogy between Eqs. (5) and (6) can be made even

more apparent if we choose the frame with qμ ¼ ðω; 0Þ and
use the analog of coordinate given by Eq. (1) that is
invariant with respect to “small” gauge transformations but
changes by an integer under “large” gauge transformations
(i.e., the transformations that cannot be smoothly deformed
to identity). The expression Eq. (5) then takes the form
completely analogous to Eq. (6):

i
Z

dteiωthTfXðtÞXð0Þgi→ω→0 −
μ4

ω2
V¼−

1

ω2

∂2EðθÞ
∂θ2

����
θ¼0

;

ð7Þ
where V is the volume of the system, and EðθÞ ¼ ϵðθÞV is
the energy of the Yang-Mills vacuum. The energy density
of the vacuum ϵðθÞ is a periodic function of the θ angle that
is analogous to the quasimomentum k in Eq. (6). At small θ,
we can expand ϵðθÞ and write

ϵðθÞ ¼ μ4
θ2

2
; ð8Þ

which exhibits the physical meaning of μ4 as of the
topological susceptibility χtop ¼ μ4 of the Yang-Mills

theory; note that a term linear in θ is forbidden by P
and CP invariances of QCD.
It is well known that topological susceptibility vanishes,

order by order, in perturbation theory. Perturbative descrip-
tion thus corresponds to μ → 0 in Eq. (5), or to the limit of
the infinitely heavy electron, m� → ∞ in Eq. (6). Infinitely
heavy electrons do not respond to electromagnetic fields,
as the corresponding coupling of electromagnetic current
j ¼ eq=m� to the gauge field jA ∼ 1=m� vanishes in the
limit m� → ∞. In this case the dynamics of photons is not
sensitive to the periodic structure of the crystal, and one can
build the usual perturbation theory of photons. However,
whenm� is finite, and is of the order of the frequency of the
external gauge field, photons can be absorbed and reemit-
ted by the electrons, and these processes severely affect the
photon propagator. Also, at finite m�, the static Coulomb
field can be screened by the electrons at large distances.
As we will discuss below, the situation in QCD is very

similar—as μ → 0, the periodic structure of the θ vacuum
becomes irrelevant. However, in the physical world
μ ∼ ΛQCD ∼ 200 MeV, so the ghost (describing the tunnel-
ing in the periodic θ vacuum) strongly affects propagation
of gluons with frequencies ω ∼ μ. At large distances, the
ghost also gives rise to the screening of color charge,
leading to the freezing of the effective coupling in the
infrared IR limit for pure gauge theory, or to the vanishing
of the coupling in the IR in QCDwith light quarks. Because
μ ∼ ΛQCD ∼ 1=Rconf is on the order of inverse confinement
radius Rconf , these phenomena describe confinement of
gluons at distances Rconf ≃ 1 fm.
The key observation of our Letter is that Eqs. (2) and (5)

define an effective ghost-gluon-gluon vertex Γμðq; pÞ.
Using this vertex, we can rewrite the correlator Eq. (5)
at small q2 as follows [see Fig. 1(a)]:

KμνðqÞ ¼
1

ð2πÞ4i
Z

d4pΓμðq; pÞ
1

p2ðq − pÞ2

Γνðq; pÞ ¼ −
μ4

q2
gμν: ð9Þ

From Eq. (9) we find that

Γμðq; pÞΓνðq; pÞ ∝ −
μ4

p2
gμν; for q ≤ p: ð10Þ

The vertices Γμðq; pÞ describe the excitation of the ghost
by gluons, and affect the gluon propagation at small
virtualities.

q
p

q

p

=

(a) (b)

FIG. 1. (a) Equation (5) in momentum representation; helix lines represent gluons and the dashed line depicts the ghost. (b) The gluon
dressed by the interactions with the ghost: a glost, see Eq. (11) for the corresponding self-energy expression.

PRL 114, 242001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
19 JUNE 2015

242001-2



Indeed, the gluon propagator is now the solution of the
equation shown in Fig. 2 with ΣðpÞ given by

ΣμνðpÞ¼
1

ð2πÞ4i
Z

d4qΓμðq;pÞ
1

q2ðq−pÞ2Γνðq;pÞ; ð11Þ

where 1=q2 is the propagator of the ghost. In evaluating
the integral of Eq. (11) we assume that q ≪ p since Γμ’s
describe the nonperturbative effects concentrated at small
momenta (long distances). Therefore,

ΣμνðpÞ≃ 4π

ð2πÞ4
Z

p

0

dq2q2Γμðq; pÞ
1

q2p2

Γνðq; pÞ ¼ −gμν
μ4

p4

Z
p2

dq2 ¼ −gμν
μ4

p2
; ð12Þ

wherewe usedEq. (10); note that inEq. (12)wemade rotation
to the pseudo-Euclidean space. We can now write down the
Schwinger-Dyson equation for the gluon propagator [9]
GμνðpÞ ¼ gμνGðpÞ in termsofΣμνðpÞ ¼ gμνΣðpÞ, see Fig. 2:

GðpÞ ¼ 1

p2
þ 1

p2
ΣðpÞGðpÞ; ð13Þ

with the solution

GðpÞ ¼ 1

p2 − ΣðpÞ ¼
1

p2 þ μ4

p2

: ð14Þ

The propagator (14) has remarkable properties. First,
GðpÞ has no infrared singularities and no gluon pole in the
physical region. Indeed, this propagator has only complex
poles at p2 ¼ �iμ2. As a result, gluons cannot be observed
as particles in detectors—in other words, they are confined.
Second, the propagator of the type of Eq. (14) was
proposed by Gribov [2] as a solution to the problem of
gauge copies—multiple solutions to the gauge fixing
condition, see [10,11] for reviews. Hence, we can state
that introducing the coupling to the ghost (and thus taking
account of the periodicity of the θ vacuum) solves the
problem of Gribov copies and leads to the confinement of
gluons. The dimensionful Gribov parameter acquires a

well-defined meaning of topological susceptibility χtop ¼
μ4 related to the η0 mass by the Witten-Veneziano relation
[4,7]; since μ≃ ΛQCD, confinement emerges at distances of
about 1 fm. Note that close to the deconfinement transition,
the topological susceptibility vanishes reflecting the resto-
ration of UAð1Þ symmetry [12,13], see [14] for a review.
Since at μ → 0 the gluon propagator becomes perturbative,
the restoration of UAð1Þ symmetry and deconfinement
should occur at the same temperature as suggested by
the lattice data [12]; however, close to Tc the nonperturba-
tive interactions induced by μ ≠ 0 are important.
In our approach, the propagator Eq. (14) results from

the admixture of the ghost to the perturbative gluon [see
Fig. 1(b)], with an amplitude defined by the topological
susceptibility μ4.We thus propose the following name for the
particle with propagator given by Eq. (14) that represents a
coherent mixture of a gluon and a ghost—a glost. Unlike the
ghost, the glost can be produced in a physical process, but
unlike the perturbative gluon, it is confined and can propa-
gate only at short distances ∼μ−1 ∼ 1 fm.
Let us now reconsider the asymptotic freedom of QCD

[15,16] using the glost propagator Eq. (14). The gluon
propagator GμνðpÞ ¼ gμνGðpÞ was introduced above in
Feynman gauge, in accord with the prescription (9) for the
correlation function of topological current. However, since
the Lorentz structure of the glost propagator is identical to
that of the perturbative gluon, we can use any gauge that is
convenient for a specific computation replacing G0ðpÞ ¼
1=p2 by (14). In our derivation we will compute the
interaction energy of two heavy quarks in the Coulomb
gauge [17,18] that is free from the Faddeev-Popov ghosts, so
we can avoid dealing with two different types of ghosts. The
dominant contribution responsible for the asymptotic free-
dom stems from the diagram of Fig. 3(a). The contribution of
this diagram in perturbative QCD takes the form

ΠðaÞ ¼3g2C2
2

Z
d4k0

ð2πÞ4i
1

ðk−k0Þ2ðk020−k02Þ
�
1−

ðk ·k0Þ2
k2k02

�
;

ð15Þ
Π is related to Σ by Σ ¼ k2Π.

=G(p) +
G (p)0

FIG. 2. The graphic form of the equation for the gluon propagator, Eq. (13). The full propagator is denoted by the bold helix line; thin
helix stands for the perturbative gluon propagator G0ðpÞ, and the blob for self-energy ΣðpÞ given by Eqs. (11) and (12).

(a) (b) (c)

FIG. 3. The first order corrections to the Coulomb energy: (a) the Coulomb gluon dressed by the transverse gluon; (b) the transverse
gluon loop; (c) the quark loop. Helix lines denote the transversely polarized gluon, the double helix lines show the longitudinally
polarized gluon, and the solid arrow lines depict the quarks.
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For the glost propagator (14), Eq. (15) changes and takes a different form:

ΠðaÞ ¼ 3g2C2
2

Z
d4k0

ð2πÞ4i
ðk−k0Þ2

½ðk−k0Þ2�2þμ4
ðk020−k02Þ

½ðk020−k02Þ�2þμ4

�
1−

ðk ·k0Þ2
k2k02

�

¼ 3g2C2
2

Z
d4k0

ð2πÞ4iRe
�

1

ðk−k0Þ2þ iμ2

	
Re

�
1

k020−k02þ iμ2

	
1

k2k02
½k2k02− ðk ·k0Þ2�: ð16Þ

In Eq. (16) we have four terms obtained by choosing different signs of iμ2. To illustrate the procedure of calculation,
let us evaluate one of them:

ΠðaÞ
1 ¼3g2C2

2

Z
d4k0

ð2πÞ4i
k2k02−ðk ·k0Þ2

½ðk−k0Þ2þ iμ2�ðk020−k02þ iμ2Þk2k02 : ð17Þ

Introducing Feynman parameters α1 þ α2 þ α3 ¼ 1 we obtain (P ¼ k0 − α1k and αS ¼ g2=4π):

ΣðaÞ
1 ¼ 3g2C2

2

1

k2

Z
1

0

dα1

Z
1−α1

0

dα2

Z
d4k0

ð2πÞ4i
k2P2 − ðk · PÞ2

½α2k20 − P2 − k2α1ð1 − α1Þ þ iμ2ðα1 þ α2Þ�3

→
integrating over k0

0
g2C2

2

Z
1

0

dα2ffiffiffiffiffi
α2

p
Z

1−α2

0

dα1

Z
d3P
ð2πÞ3

3

16

P2

½P2 þ k2 � α1ð1 − α1Þ þ iμ2ðα1 þ α2Þ�5=2

→
integrating over P 3αS

8π
C2
2

Z
1

0

dα2ffiffiffiffiffi
α2

p
Z

1−α2

0

dα1

�
−
4

3
þ ln

�
2Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2α1ð1 − α1Þ þ iμ2ðα1 þ α2Þ
p

�	
; ð18Þ

where L is an ultraviolet cutoff in the integration over
momentum. The integrals over α1 and α2 can be taken
analytically. The main features of Eq. (18) are the following:
it has a logarithmic divergence at largek and is finite atk ¼ 0.
Summing all terms we find that we need to replace

ln ðL2=k2Þ of perturbative QCD in the diagram of Fig. 3(a)
by the following function:

ln ðL2=k2Þ⟶ ln ðL; k; μÞ

≡ 3

8

Z
1

0

dα1ffiffiffiffiffi
α1

p
Z

1−α1

0

dα2

×

�
−
16

3
þ ln

�
4L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k4α22ð1 − α2Þ2 þ μ4ðα1 þ α2Þ2
p

�

þ ln

�
4L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k4α22ð1 − α2Þ2 þ μ4ðα1 − α2Þ2
p

�	
: ð19Þ

It turns out that the same substitution has to be done in the
expression for Fig. 3(b) that in the perturbative approach
gives a positive contribution to the β function. However, the
contribution of the quark loop [Fig. 3(c)] remains the same as
in perturbative QCD. The sign of this contribution to the β
function is also positive, and it leads to Landau pole and a
“Moscow zero” [19]. As a result, the QCD coupling in our
approach tends to zero in the infrared region of k → 0.
If we choose the renormalization point k ¼ μ, the

running coupling takes the form

αSðk2Þ

¼ αSðμÞ
1þαSðμÞf11Nc

12π ½lnðL;k;μÞ− lnðL;μ;μÞ�−2Nf

12π lnðk2=μ2Þg
:

ð20Þ

In Fig. 4 we plot the coupling αS as a function of k for
two cases: our model for QCD and pure gluodynamics
[Fig. 4(a)], and the comparison of αS in gluodynamics
with perturbative QCD calculations in the leading order
[Fig. 4(b)]. In both cases we choose the renormalization
mass to be equal to the mass of the Z boson; we use the value
of μ ¼ 0.18 GeV from the original paper [4] where it has
been determined from themass of η0 meson, andNc¼Nf¼3.
One can see that replacing the gluon propagator by the

propagator of the glost in gluodynamics removes the Landau
pole and leads to the finite value of αS at k ¼ 0. On the other
hand, with the inclusion of quarks, the strong coupling
vanishes at k ¼ 0. At short distances, the running coupling is
dominated by the perturbative contribution and so is not
modified. The ghost affects the running coupling in a way
that is quite different from the effect of a single instanton,
which has been shown to increase the effective coupling at
distances on the order of the instanton size [20,21]. This may
not be surprising as the ghost describes the effect of many
instanton transitions throughout the θ vacuum.The screening
effect of the ghost admixture is clearly a consequence of the
fact that it is a spin-zero pseudoscalar “particle”.
It has been argued by Dokshitzer [22] that the exper-

imental data indicate that in the IR region the QCD
coupling remains effectively small:

α0 ¼
1

μI

Z
μI
dkαSðkÞ ≈ 0.5 for μI ¼ 2 GeV: ð21Þ

In our approach we get α0 ¼ 0.59 for renormalization point
k ¼ MZ, in reasonable agreement with Eq. (21).
It is of fundamental interest to establish the microscopic

dynamics responsible for the long-range correlations of
topological current captured by the ghost. A recent study
within the “deformed QCD" attributes these correlations
to the topological order in the vacuum [23]. Our result
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suggests a link between the confinement and the long-range
topological correlations in the QCD vacuum, and provides
a practical way of computing power-suppressed corrections
to QCD amplitudes, in particular the ones that are forbidden
in the perturbative approach.
To summarize, we propose to modify the gluon propa-

gator in perturbative QCD by taking account of the periodic
structure of the QCD θ vacuum. Our prescription for the
gluon propagator leads to the coupling of the gluons to the
ghost saturating the anomalous Ward identity for topological
current. The resulting glost propagator appears to have the
functional form originally proposed by Gribov, in which the
role of dimensionful parameter is played by the topological
susceptibility χtop ≡ μ4. Our approach thus removes the
Gribov copies that usually plague perturbation theory, and
describes confinement of gluons at distances ∼μ−1 ≃ 1 fm.
We also find that the running coupling in the IR freezes in
pure gauge theory, or tends to zero in QCDwith light quarks.
Because the topological susceptibility vanishes above the
deconfinement transition, the glosts become usual perturba-
tive gluons in the deconfined phase at high temperatures.
The glost propagator leads to the exponential falloff of the
high-energy hadron scattering amplitude at large impact
parameters needed to satisfy the Froissart bound; this can
solve the long-standing problem of the perturbative approach
in describing high energy scattering [24]. In QCD ampli-
tudes the coupling to the ghost can give rise to spin
asymmetries [25] that are different from the usual perturba-
tive approach—it will be interesting to study the resulting
implications for spin physics at colliders.
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FIG. 4 (color online). The running constant αS as a function of momentum k. Figure 4(a) shows the result for αS in our model for QCD
with light quarks (blue line that goes to zero at k → 0) and gluodynamics (red line). Figure 4(b) shows the comparison of momentum
dependence of αS in our model for gluodynamics (blue line) and perturbative QCD (red line that is above the blue one at small k). The
renormalization point is chosen at the mass of Z boson, k ¼ MZ.
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