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Unitary transformations are the most general input-output maps available in closed quantum systems.
Good control protocols have been developed for qubits, but questions remain about the use of optimal
control theory to design unitary maps in high-dimensional Hilbert spaces, and about the feasibility of their
robust implementation in the laboratory. Here we design and implement unitary maps in a 16-dimensional
Hilbert space associated with the 6S1=2 ground state of 133Cs, achieving fidelities > 0.98 with built-in
robustness to static and dynamic perturbations. Our work has relevance for quantum information
processing and provides a template for similar advances on other physical platforms.
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Quantum control in large dimensional Hilbert spaces is
an essential part of quantum information processing. For
closed systems the relevant input-output maps are unitary
transformations, and the fundamental challenge becomes
how to implement these with high fidelity in the presence
of experimental imperfections and decoherence. The goal
of quantum control, then, is to find a control Hamiltonian
HCðtÞ such that dynamical evolution over some time T
accomplishes the desired transformation. For two-level
systems (qubits) most aspects of this problem are well
understood [1], but for systems with Hilbert space dimen-
sion d > 2 (qudits) questions remain regarding the design
of control Hamiltonians [2] and the feasibility of robust
implementation [3,4]. If the control task is simple or special
symmetries are present, it is sometimes possible to find a
high-performing control Hamiltonian through intuition, or
to construct one using group theoretic methods [5]. A more
general approach is provided by “optimal control,” a well
established procedure in which HCðtÞ is parametrized by a
set of control variables, and a numerical search performed
to optimize the fidelity with which the control objective is
achieved [2]. The application of optimal control to quantum
systems originated in nuclear magnetic resonance [1] and
physical chemistry [2], and has expanded to include ultra-
fast physics [6], cold atoms [7,8], biomolecules [9], cond-
ensed matter spins [10], and superconducting circuits [11].
In this Letter we explore the use of optimal control to

design control Hamiltonians for tasks of varying complex-
ity, ranging from state-to-state maps to full unitary maps in
a large (d ¼ 16) Hilbert space. We study the efficacy of
numerical design and the performance of the resulting
Hamiltonians, using as our test bed the electron and nuclear
spins of individual 133Cs atoms driven by radio frequency

(rf) and microwave (μw) magnetic fields [12,13]. Our
experiments show that the optimal control strategy is
adaptable to a wide range of tasks, and that it can generate
control Hamiltonians with excellent performance in the
presence of static and dynamic perturbations. On average,
for large samples of randomly chosen transformations,
we achieve fidelities from 0.982(2) for unitary maps to
0.995(1) for state maps (errors are one standard deviation).
These results represent a significant advance in control
complexity and fidelity compared to our prior work on
state-to-state maps [13], and to state-of-the art for other
systems with similar-sized Hilbert spaces [11,14].
Furthermore, given that the optimal control paradigm
applies to any physical platform regardless of specifics,
our work provides a useful template for similar advances
elsewhere. Potential applications include improved fault
tolerance in quantum computation [15–17], state prepara-
tion for quantum metrology [18], implementation of
quantum simulations [19], and fundamental studies of
open quantum systems and quantum chaos [20].
Introductions to optimal control can be found in the

literature [2]. In the general case, one starts with a control
Hamiltonian HCðtÞ ¼ H0 þ

P
jbjðtÞHj, chosen so it can

generate all possible unitary maps and renders the system
“controllable.” The control waveforms are coarse grained in
time, fbjðtÞg → fbjðtkÞg, to yield a discrete set of control
variables. Given a target unitary W acting in the system
space H, one can search for a set fbjðtkÞg that minimizes
the Hilbert-Schmidt distance ∥W −UðTÞ∥, where UðTÞ is
the propagator driven by HCðtÞ during the time T. If the
overall phase of W is unimportant, one can instead
maximize the “standard” fidelity F S¼jTr½W†UðTÞ�j2=d2.
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Similarly, a map Wif from an initial subspace Hi to
a final subspace Hf can be obtained by maximizing
F S ¼ jTr½W†

ifPfUðTÞPi�j2=p2, where p is the dimension
of, and Pi, Pf projectors onto, the subspaces. For a state
map (p ¼ 1) this reduces to F S ¼ jhψfjUðTÞjψ iij2. In
practice HCðtÞ may depend on additional parameters
Λ ¼ fλig that are imperfectly known. If so, one can search
for robust control waveforms by maximizing the average
fidelity F̄ S ¼

R
Λ PðΛÞF ðΛÞdΛ, where PðΛÞ is the prob-

ability that the parameters take on the valuesΛ, andF ðΛÞ is
the corresponding fidelity. If the parameters vary with time,
one can average over an ensemble of histories,Λ ¼ fλiðtÞg,
and search for control waveforms with built-in dynamical
decoupling [21]. Robust control is essential in real-world
scenarios, but until now little has been known about its
feasibility in large Hilbert spaces.
The structure of the 6S1=2 electronic ground state of

133Cs follows from the addition of electron and nuclear
spins. The resulting Hilbert space has two manifolds with
quantum numbers Fð�Þ ¼ I � S ¼ 7=2� 1=2 ¼ 3; 4, and
overall dimension d ¼ 16. As shown in [12], this system is
controllable with a static bias magnetic field along z,
a pair of phase-modulated rf magnetic fields along x and
y, and a phase-modulated μwmagnetic field coupling states
jFð�Þ; m ¼ Fð�Þi. In the rotating wave approximation, the
control Hamiltonian has the form

HCðtÞ ¼ H0 þHðþÞ
rf ½ϕxðtÞ;ϕyðtÞ� þHð−Þ

rf ½ϕxðtÞ;ϕyðtÞ�
þHμw½ϕμwðtÞ�: ð1Þ

Here H0 is a drift term including the hyperfine interaction

and Zeeman shift from the bias field, the Hð�Þ
rf generate

SUð2Þ rotations of the Fð�Þ hyperfine spins depending on
the rf phases, and Hμw generates SUð2Þ rotations of the
jFð�Þ; m ¼ Fð�Þi pseudospin depending on the μw phases.
Besides the control phases, HCðtÞ depends on the follow-
ing parameters (nominal values in parenthesis): the
Larmor frequency in the bias field (Ω0 ¼ 2π × 1 MHz),
the rf Larmor frequencies in the rotating frame
(Ωx ¼ Ωy ¼ 2π × 25 kHz), the μw Rabi frequency
(Ωμw ¼ 27.5 kHz), and the rf and μw detunings from
resonance (Δrf ¼ Δμw ¼ 0). For details see [22] and the
accompanying supplemental material [23].
Following the general approach, we use control wave-

forms fϕxðtkÞ;ϕyðtkÞ;ϕμwðtkÞg that correspond to piece
wise constant phase modulation. Given some target unitary
W, we start by choosing an overall control time T and
phase-step duration δt, and then generate a random guess
for the control phases. This seeds a gradient ascent
algorithm, which eventually converges on a waveform
corresponding to a local maximum of the fidelity. At each
iteration UðTÞ is found by integrating the Schrödinger
equation, and the fidelity relative to W is computed.

When searching for robust control waveforms, we have
found that our dominant source of uncertainty is spatial
inhomogeneity of the bias field, and that maximizing a two-
point average F̄ S ¼ ½F SðB0 þ δBÞ þ F SðB0 − δBÞ�=2 is
sufficient for good performance. A similar approach might
suffice for robust control of many other well-behaved
physical systems. In more challenging scenarios, our
experiments on state maps [13] and our numerical explo-
ration of waveform design for more complex tasks show
that robust control can be extended to additional inhomo-
geneous parameters. One can also compensate for larger
inhomogeneous bandwidths than done here. In our case
δΩ0 ¼ gFμBδB=ℏ is well below the frequency resolution
∼1=T of our waveforms, but robustness can be achieved
across a significant fraction of the waveform modulation
bandwidth 1=δt if the fidelity is maximized on a wider grid.
As is generally the case, additional robustness requires
more phase steps and longer control time. In practice most
systems will have an upper limit on T, beyond which added
robustness to inhomogeneous parameters is overwhelmed
by other errors. In that case one is faced with a tradeoff
involving the number of parameters and bandwidths for
which robust control can be achieved.
In principle one can use standard optimization tools to

search for control waveforms. We find it advantageous to
supplement these with a modified version [24] of the
numerically efficient GRAPE algorithm for the calculation
of gradients [25]. With this we find optimization of
individual waveforms to be straightforward on a desktop
computer, and the design of large numbers of waveforms to
be feasible on a high-performance cluster [26]. For appro-
priate T and δt a modest number of initial guesses (∼10)
typically lead to at least one waveform with theoretical
fidelity ≥ 0.999. This is consistent with the benign
character of control landscapes found in theoretical
studies [27,28].
As expected, different quantum maps require control

waveforms of different complexity. Figure 1(a) shows a
robust waveform designed for a randomly chosen unitary
map on the 16-dimensional Hilbert space H. In this
case every element of the matrices UðTÞ and W must be
identical. A d-dimensional unitary matrix W in SUðdÞ
requires d2 − 1 real numbers to specify, and thus the
waveforms must contain at least that many independent
phases. In practice a substantially larger number is needed
to achieve robust control. Similarly, Figs. 1(b) and 1(c)
show waveforms for a unitary map on the 9-dimensional
subspace of the FðþÞ manifold, and for a state-to-state map.
These examples illustrate how control waveforms can be
simpler and shorter as the constraints on UðTÞ are relaxed.
Technical aspects of our laboratory setup were described

in [13]. The basic experimental sequence is performed
in parallel on ∼106 laser cooled Cs atoms, and consists
of initial state preparation, implementation of a quantum
map, and a measurement of the output populations in the
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magnetic sublevels jF;mi. In principle one can reconstruct
a quantum map through process tomography, but in
practice this procedure is too error prone for our needs
here. We rely instead on randomized benchmarking, a
protocol originally developed for qubits [29], applied to
state-to-state maps in [13], and here extended to general
maps Hi → Hf. The idea is to start with a random input
state, apply a random sequence of l maps, and estimate its
overall fidelity by measuring the population of the expected
output state. This basic step is repeated many times for
different l. Fitting the decay of the overall fidelity as a
function of l then yields an accurate measure of the average
fidelity per map.
An example of benchmarking data for a random sample

of unitary maps on H is shown in Fig. 1(d), from which
we estimate “benchmark” fidelities FB ¼ 0.982ð2Þ and
FB ¼ 0.971ð1Þ for robust and nonrobust control wave-
forms. Similar data yield fidelities FB ¼ 0.984ð2Þ for
unitary maps on the FðþÞ subspace, FB ¼ 0.995ð1Þ for
maps between randomly chosen 2-dimensional subspaces
Hi, Hf, and FB ¼ 0.995ð1Þ for state maps, in all cases
using robust waveforms. Note that the measured FB lie
consistently below our design goal of ≥ 0.999, the more so
for complex tasks requiring longer waveforms. This is
consistent with errors from experimental imperfections and
external perturbations that accumulate over time.
The unitary maps of Fig. 1(d) were implemented with a

control time and phase step duration identified as near-
optimal based on computer-numerical and laboratory
exploration [30]. Figure 2 shows the average fidelity
calculated for that set of maps when implemented with

waveforms using a range of ðT; δtÞ. Also shown are
benchmark fidelities measured at a few discrete points.
The primary feature is a high fidelity plateau, dropping
sharply when T is too short for the required dynamical
evolution, or the ratio T=δt does not allow for a sufficient
number of control phases. In our experiment the time scales
for Tmin and δtmin are set by the rf Larmor and μw Rabi
frequencies, and for δtmin also by the rf modulation
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FIG. 1 (color online). Examples of phase modulation waveforms for different control tasks. (a) For a unitary map onH every element
of UðTÞ is constrained and the control waveforms must have at least d2 − 1 ¼ 255 independent phases. In our setup the optimal control
time and phase step duration correspond to a total of 450 phases. (b) A unitary map on the p ¼ 9 dimensional FðþÞ manifold constrains a
p × p block ofUðTÞ. The waveforms must contain at least p2 − 1 ¼ 80 phases, and we have successfully used a total of 210. (c) A state-
to-state map in H constrains a single column of UðTÞ. The waveforms must contain at least 2d − 2 ¼ 30 phases, and we have
successfully used a total of 60. (d) Randomized benchmarking data showing overall input-output fidelities for sequences of l unitary
maps onH, implemented with robust waveforms of the type shown in (a) (circles), or with nonrobust waveforms (diamonds). Each point
represents an average of 10 sequences; error bars are � one standard deviation of the mean. Lines are fits from which the benchmark
fidelity FB is determined.
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FIG. 2 (color online). Average fidelity F S reached by a random
set of unitary maps on H, as function of the control time T and
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tions T; δt. The top contour line is at F S ¼ 0.99.
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bandwidth. Less dramatically, the figure shows a small
decline in fidelity for T ≫ Tmin due to accumulating errors
from imperfections and perturbations. Based on Fig. 2,
the optimum combination is around T ¼ 600 μs and
δt ¼ 4 μs. Similar analyses show decreasing Tmin for
simpler tasks; we find optimal control times of 350 μs
for unitary maps on the FðþÞ subspace, 180 μs for
2-dimensional maps Hi → Hf, and 100 μs for state maps.
So far the focus has been on optimization for a given

physical system and laboratory setup with its inherent
imperfections and perturbations. To learn more about the
prospects for control in less benign environments, we study
the performance of robust control waveforms in the
presence of larger, deliberately introduced perturbations.
As an example, consider static and dynamic variations in
the bias field, BðtÞ ¼ B0 þ δBðtÞ. In our case δBðtÞ is
dominated by the 60 Hz power line cycle, and thus any
change during control times T ≤ 1 ms will be approxi-
mately linear. This situation is typical of many cold-atom
experiments, and might serve as a starting point for robust
control of other well-behaved systems also. More complex
time variations may be better characterized by frequency
content, as in the design of advanced decoupling schemes
for qubits [31].
Figure 3 shows predicted fidelities for unitary

maps in the presence of perturbations δBðtÞ ¼ δBi þ
ðδBf − δBiÞt=T, characterized by the initial and final
values of the bias field. Nonrobust waveforms were
designed to maximize the fidelity at the nominal bias field,
resulting in poor performance for even small δBi, δBf.
Robust waveforms, by contrast, were designed to maximize
the average fidelity for four different situations: two static
offsets, δBi ¼ δBf, and two linear variations, δBi ¼ −δBf.
This improves the fidelity significantly, expanding the 0.99
contour by a factor of 5 compared to nonrobust waveforms.
Numerical modeling indicates these robust waveforms
are also less sensitive to higher frequency, piece wise linear
variations in the bias field. The tradeoff is a control
time T ¼ 800 μs, about 35% longer than for nonrobust
waveforms.
To verify the performance of robust and nonrobust

waveforms in the laboratory, we performed randomized
benchmarking at points along the δBi ¼ δBf and
δBi ¼ −δBf diagonals. As shown in Figs. 3(e) and 3(f),
the predicted and observed increases in robustness agree
reasonably well. Note also that in the absence of a
deliberately applied perturbation, the robust waveforms
achieve similar fidelity as Fig. 1(d), indicating that inherent
dynamic perturbations are insignificant in our setup.
Looking ahead, one immediate issue is how to increase

fidelity in our setup, whether by improving the accuracy of
our control fields or further reducing external perturbations.
It will also be advantageous to shorten control times, by
increasing the strength and modulation bandwidth of our
control fields, and/or by adding a second μw field to couple

the states jFð�Þ; m ¼ −Fð�Þi. In the longer term there are a
number of important questions to explore. What are the
practical limits on optimal control, and will this permit
accurate and robust control of less ideal systems? How
large a Hilbert space is it realistic to control by the means
used here? And how do the answers to these questions
depend on the structure of the control Hamiltonian, notably
its connectedness [28]? Can inhomogeneous control [32]
be extended to qudits, perhaps allowing addressable unitary
maps on large arrays [33]? And finally, is it possible to
optimize control in the presence of decoherence [34],
and perhaps extend it to (nonunitary) completely positive
maps [35]? Some of these questions can be explored in
our current system, while others await the application of
optimal control to scalable architectures of interacting
qubits and qudits.
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FIG. 3 (color online). Fidelity of robust vs nonrobust control
waveforms for unitary maps on H. (a) Bias field variation δBðtÞ
assumed in the design of nonrobust waveforms. (b) Average
fidelity F S predicted for these nonrobust waveforms when the
actual δBðtÞ changes linearly from δBi to δBf . The central dot
corresponds to the variation in (a). (c) Bias field variations δBðtÞ
used for the four-point average that goes into the design of robust
control waveforms. (d) Average fidelity F S predicted for these
robust waveforms as function of the actual δBi, δBf . Dots
correspond to the variations in (c). (e) Measured and predicted
fidelities for robust (blue) and nonrobust (orange) control wave-
forms, along the diagonal δBi ¼ δBf. (f) Same along the diagonal
δBi ¼ −δBf. Data points in (e) and (f) show the average FB for
the set of maps; error bars are � one standard deviation of the
average. Dashed lines are parabolic fits to guide the eye. Solid
lines show the predicted F S. Magnetic fields are given in units of
Larmor frequency.
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