
Frequency-Independent Response of Self-Complementary Checkerboard Screens

Yoshiro Urade,1,* Yosuke Nakata,2 Toshihiro Nakanishi,1 and Masao Kitano1,†
1Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan

2Center for Energy and Environmental Science, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
(Received 16 December 2014; published 9 June 2015)

This research resolves a long-standing problem on the electromagnetic response of self-complementary
metallic screens with checkerboardlike geometry. Although Babinet’s principle implies that they show a
frequency-independent response, this unusual characteristic has not been observed yet due to the
singularities of the metallic point contacts in the checkerboard geometry. We overcome this difficulty by
replacing the point contacts with resistive sheets. The proposed structure is prepared and characterized by
terahertz time-domain spectroscopy. It is experimentally confirmed that the resistive checkerboard structures
exhibit a flat transmission spectrum over 0.1–1.1 THz. It is also demonstrated that self-complementarity can
eliminate even the frequency-dependent transmission characteristics of resonant metamaterials.
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Duality is one of the key concepts in physics and
engineering, as exemplified by electromagnetic duality
[1], T duality in string theory [2], and the duality of
electrical circuits [3]. It relates two seemingly different
systems or quantities, and sometimes helps us to indirectly
gain physical insight into intractable problems. A system is
said to be self-dual if it coincides with its own dual. Self-
duality is symmetry with respect to duality transformations.
Problems with self-duality often have simple analytical
solutions due to the constraints imposed by their symmetry.
These results are universal and do not depend on the details
of the problems. For example, self-dual symmetry has
been utilized to determine critical temperatures of two-
dimensional Ising models (Kramers-Wannier duality) [4].
Moreover, there are examples in electromagnetic systems
ranging from dc to radio frequency: evaluating the effective
conductivity of two-phase composite media (Keller-
Dykhne duality) [5], obtaining constant-resistance electri-
cal circuits [6], and making broadband antennas [7].
Recently, self-dual symmetry has been applied to the
design of metamaterials with zero backscattering [8].
Let us now focus our attention on the duality and self-

duality of planar structures composed of two elements,
which can be represented by two-tone patterns. Interchange
of these two colors is considered to be a duality trans-
formation. If patterns are invariant under the interchange of
colors, as shown in Fig. 1(a), they are self-dual. This type of
symmetry is referred to as color symmetry [9] or self-
complementarity, and it is often found in designs of
traditional garments and in the impressive works of the
graphic artist M. C. Escher.
In optics, there is a well-known duality relationship

called Babinet’s principle [10], which relates the fields
scattered by a metallic screen with those scattered by its
complementary screen, which is obtained by interchanging
the areas of metal and the holes. With Babinet’s principle, it

has been shown theoretically and experimentally that an
antenna with a self-complementary shape exhibits a fre-
quency-independent input impedance [7,11]. Similarly, it
also predicts that self-complementary metallic screens
exhibit frequency-independent responses as described
below. Here, we will consider the scattering problems of
self-complementary metallic screens such as the “ideal”
checkerboard geometry shown in Fig. 1(a). Babinet’s
principle ensures that the power reflectance R of the
original problem is equal to the power transmittance Tc
of the dual problem (Tc ¼ R). On the other hand, the power
transmittance T of the original problem must be equal to
Tc, due to the self-duality (T ¼ Tc). Then, the energy
conservation law (T þ R ¼ T þ Tc ¼ 1) gives the result
that the power transmittance of electromagnetic waves
through the checkerboard screen is equal to 1=2 and is
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FIG. 1 (color online). (a) Examples of planar patterns with self-
complementarity. (b) The ideal metallic checkerboard structure
with self-complementarity, and (c) the resistive checkerboard
structure.
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independent of the frequency of the incident waves [12].
However, this result seems strange for the following
reasons: (i) the ideal checkerboard structure shows a
frequency-independent response in spite of the fact that
its geometry has periodicity or a characteristic length;
(ii) the frequency-independent spectrum violates Foster’s
reactance theorem in the long-wavelength limit, which
states that the reactance of passive and lossless systems
must strictly increase with frequency [13].
During the past few decades, several experimental and

numerical attempts have been made to observe the unusual
frequency-independent transmission spectrum of the ideal
checkerboard structures [14–16], but none of them has
succeeded in observing the flat spectrum predicted by this
theory. This inconsistency is attributed to the point contacts
at the corners of the metal patches in the ideal checkerboard
geometry illustrated in Fig. 1(b). In principle, it is impossible
to realize such ideal point contacts. Thus, the corners of
actual structures have to be either connected or discon-
nected. It is known that such metallic objects that are nearly
touching exhibit singular electromagnetic responses [17]. In
addition, as is the case of the dc electrical conduction of the
system [18], the connectivity of the metal corners has a
significant influence over the scattering characteristics at
higher frequencies [16,19,20]. This critical behavior has
been explained by percolation theory with the identification
of the ideal checkerboard as the structure representing the
percolation threshold between connected structures and
disconnected ones [12]. In the case of self-complementary
antennas, the connectivity of the metal is not considered as a
critical problem, because the point contacts work as feed
points to connect external circuits. Therefore, the existence
of a flat transmission spectrum in metallic checkerboard
screens is still controversial and worth pursuing.
In this Letter, to resolve the long-standing problem

concerning self-complementarity, we propose using yet
another intermediate state between connection and dis-
connection instead of the singular point contacts. To be
more specific, we will replace the corners of the metallic
checkerboard structure with resistive sheets, as shown in
Fig. 1(c). By controlling the resistance of the sheets, we can
realize the intermediates between the connected states and
the disconnected ones [21]. We then introduce an extension
of Babinet’s principle to deal with the resistive elements
and show a self-dual condition on the resistance. Finally,
we experimentally demonstrate in the terahertz regime that
the checkerboard structure loaded with resistive elements
exhibits the predicted frequency-independent response
under this specific condition on the resistance.
The familiar form of Babinet’s principle relates the

scattering due to a thin metallic structure to that due to
its complement [10]. Note that the structures are assumed to
be perfect electric conductors. To discuss the effect of the
resistive elements in the resistive checkerboard structure,
we need to extend Babinet’s principle to finite sheet
impedance. Let us consider the problem of plane-wave

scattering by a structure placed in a vacuum for which the
spatial distribution of the sheet impedance Zðx; yÞ is as
shown in Fig. 2(a), where ðx; yÞ gives the coordinates on
the structure. Next, we construct the dual problem, shown
in Fig. 2(b), where the complementary sheet-impedance
distribution Zcðx; yÞ is defined as

Zcðx; yÞ ¼
ðZ0=2Þ2
Zðx; yÞ : ð1Þ

Here, Z0 ∼ 377 Ω is the impedance of a vacuum. In simple
terms, the sheet impedance is inverted at each point on the
structure. We note that the polarizations of the incident
waves of the two problems differ by 90 deg. Babinet’s
principle for finite sheet impedance relates the transmit-
tance of these two situations [22,23]:

~tðωÞ þ ~tcðωÞ ¼ 1; ð2Þ
where ~tðωÞ and ~tcðωÞ are the complex amplitude trans-
mittance of the zeroth-order diffraction mode in the original
problem and its dual, respectively, and ω is the angular
frequency of the incident wave. Here, the zeroth-order
diffraction mode refers to the mode that has the same wave
vector and polarization as the incident one. It is easy to
confirm that the extended version of Babinet’s principle
includes the conventional one by recalling that Z ¼ 0 and
Z ¼ ∞ correspond to perfect electric conductors and holes,
respectively. We emphasize that Babinet’s principle relates
the amplitude coefficients, not the power transmittance. In
cases with neither polarization conversion nor diffraction,
the power transmittance is related (T þ Tc ¼ 1) by a
combination of Babinet’s principle (Tc ¼ R) and energy
conservation (T þ R ¼ 1).
We apply this principle to the resistive checkerboard

structure. If the sheet impedance of the resistive sheet is
equal to Z0=2, the structure is self-complementary, because
resistive sheets are invariant under the transformation in
Eq. (1) and the complementary structure can overlap the
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FIG. 2 (color online). Two problems of plane-wave scattering
related through Babinet’s principle extended to finite sheet
impedance. (a) The original problem. (b) The dual problem with
the complementary sheet-impedance distribution and the incident
polarization orthogonal to the original one. The symbols E, H,
and k represent the electric field, the magnetic field, and the wave
vector, respectively.
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original one. Hence, we see that the dual problem of the
resistive checkerboard structure is identical to the original
one when linearly polarized plane waves are normally
incident. Consequently, we obtain ~tðωÞ ¼ ~tcðωÞ, and com-
bining this with Eq. (2) leads to

~tðωÞ ¼ ~tcðωÞ ¼
1

2
: ð3Þ

This indicates that the resistive checkerboard structure
shows a frequency-independent transmission spectrum if
the sheet impedance of the resistive sheets is equal to Z0=2.
The same applies to the reflection spectrum, and we obtain
an amplitude reflectance ~rðωÞ ¼ −1=2. Therefore, half the
incident power must be diffracted or absorbed. In particu-
lar, in the long-wavelength limit where there is no dif-
fraction, half the power is absorbed by the resistive sheets.
The theoretical general sufficient conditions for the fre-
quency-independent response have been presented in our
previous paper (see Ref. [23]). It should be noted that Z0=2
is replaced with Z0=ð2nÞ when the structure is surrounded
by an isotropic dielectric medium with refractive index n.
We will now explain our experimental demonstration of

the above situation. The resistive checkerboard structure
was fabricated on a c-cut sapphire substrate (20 mm×
20 mm × 900 μm, Kyocera) by using the standard photo-
lithography and lift-off technique. For the case of normal
incidence, the refractive index of the c-cut sapphire plate is
that for ordinary waves, i.e., nSa ∼ 3.1 in the terahertz
regime [24]. The unit cell of the fabricated resistive
checkerboard structure is shown in Fig. 3(a), and its
photomicrograph is shown in Fig. 3(b). The structure
consists of two layers. A resistive titanium (Ti) layer
19 nm thick and a conductive aluminum (Al) layer
400 nm thick were deposited by electron-beam evaporation
at room temperature. The Ti rectangles have a margin of
d − l ¼ 20 μm that overlaps with the Al patches to assure
electrical contact. With the terahertz time-domain spectros-
copy (THz-TDS) technique (see the Supplemental Material
for the experimental details [25]) and Tinkham’s equation
[27], the sheet impedance of the 19-nm-thick Ti film was
estimated to be 0.98 × Z0=ð2nSaÞ. The thickness of the Al
layer was determined by taking into account the skin depth
of terahertz radiation in Al, ∼100 nm at 1 THz [28].
For comparison, the connected and disconnected checker-
board structures were also fabricated as shown in Figs. 3(c)
and 3(d). Their dimensions are the same as the resistive
one, although they comprise only an Al layer and do not
have self-complementarity.
To investigate their transmission properties, the fabri-

cated structures were also characterized with THz-TDS
[25]. The probe terahertz beam was linearly polarized in the
y direction and focused on the samples under normal
incidence with respect to the sample plane. In order to
apply Babinet’s principle, it is necessary to satisfy the
mirror-symmetry condition with respect to the sample
plane. During the measurements, the surfaces of the

checkerboard structures were covered with another plain
sapphire plate so that the structures were symmetrically
sandwiched between sapphire plates. We used a pair of
plain sapphire plates as a reference. The amplitude trans-
mission coefficients ~tðωÞ of the samples were calculated by
~tðωÞ ¼ ~EsampleðωÞ= ~EsapphireðωÞ, where ~EsampleðsapphireÞ rep-
resents the Fourier transform of a recorded electric field of a
terahertz pulse transmitted through a sample (sapphire). In
the calculation, the echo pulses caused by reflections at the
boundaries of the substrate were removed from the tem-
poral waveforms by multiplying by a time window. We
note that the effect of the diffracted waves is negligible if
the detector is sufficiently distant from the samples, and the
terahertz beam can be approximated by a plane wave in the
neighborhood of the focal point. Therefore, we can regard
the experimental results as the theoretical transmission
coefficients of the zeroth-order diffraction mode.
The measured amplitude transmission spectra of the

checkerboard structures are shown in Fig. 4(a) (see
Fig. S2 in the Supplemental Material for comparison
with numerical simulations [25]). It is clearly confirmed
from the result that the resistive case shows a nearly
frequency-independent spectrum in both the real and
imaginary parts. Note that the flatness continues beyond
the diffraction frequency (0.64 THz) or the homogenization
limit. On the other hand, the spectra of the connected
and disconnected checkerboard structures highly depend
on the frequencies of the incident waves. Figure 4(b)
shows the loci of the amplitude transmission coefficients
in the frequency range of 0.1–0.55 THz, where diffraction
is negligible. We can easily confirm that the locus
of the resistive case stays in close proximity to
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FIG. 3 (color online). (a) The unit cell of the resistive checker-
board structure. The dimensions are as follows: a ¼ 150 μm,
d ¼ 50 μm, w ¼ 30 μm, and l ¼ 30 μm. The gray dotted
lines indicate the area of overlap of the two layers. (b)–(d)
Photomicrographs of the fabricated checkerboard structures.
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ðRe~t; Im~tÞ ¼ ð0.5; 0Þ. On the other hand, as the frequency
increases, the loci of the connected and disconnected cases
move in a clockwise direction along a circle centered at
(0.5,0) with radius 0.5. The constraint of the motion to the
path defined by this circle is due to energy conservation in
the nondiffraction regime [29].
Equation (3) holds for any self-complementarity struc-

tures with n-fold rotational symmetry (n ≥ 3) [23]. The
consequent frequency-independent response is counterin-
tuitive, especially when these are resonant structures, which
are often building blocks of metamaterials. Here, we
consider resistive self-complementary structures loaded
with electric-inductive-capacitive (ELC) resonators [30],
and their complementary structures [31]. Their shape and
dimensions are shown in Fig. 5(a). They are designed to
exhibit an inductive-capacitive resonance at 0.41 THz when
surrounded by sapphire. A photomicrograph of the fab-
ricated planar metamaterial is shown in Fig. 5(b). The
details of the fabrication are the same as above. The ELC
resonators and their complements are placed at the centers
of the metallic patches or holes in the resistive checker-
board structure to maintain self-complementarity. The
connected and disconnected structures were also prepared
for comparison, as shown in Fig. 5(c). We measured the
electric fields transmitted through the samples by THz-
TDS. Figure 5(d) shows the measured waveforms of the
electric fields after passing through the reference sapphire
plates and the metamaterials (see Fig. S7 in the
Supplemental Material for their transmission spectra
[25]). In both the connected and the disconnected cases,
the waveforms are highly distorted as compared to those of
the reference; this is due to the frequency-dependent
transmission characteristics of the metamaterials. In addi-
tion, we can see persistent oscillations after the main pulse,
and these are the evidence that the incident energy is
temporarily stored in the resonant structures and then
released afterward. On the other hand, the distortion in
the resistive case is obviously small, and persistent
oscillations are not observed. This clearly indicates that

self-complementarity suppresses the frequency dependence
of the transmission induced by the resonant structures. We
note that resistive loading without self-complementarity
does not cause the frequency independence (see Fig. S5 in
the Supplemental Material [25]).
In conclusion, we performed an experiment that dem-

onstrated the controversial frequency-independent trans-
mission spectra of self-complementary screens by replacing
singular point contacts with resistive sheets. Consequently,
this work revealed that the controversy arose from an
implicit assumption about the power transmittance,
T þ Tc ¼ 1, which does not hold in self-dual cases. We
also showed that self-dual symmetry can suppress even the
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FIG. 4 (color online). The results of the transmission measurements. (a) The transmission spectra. (b) The loci of the amplitude
transmission coefficients in the frequency range of 0.1–0.55 THz.
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FIG. 5 (color online). (a) The dimensions of the ELC resonators
and the complementary ones, which are built in resistive
checkerboard structures: p ¼ 65 μm, s ¼ 8 μm, and g ¼
8 μm. (b) A photomicrograph of the resistive self-complementary
metamaterial. (c) Photomicrographs of the connected and dis-
connected checkerboard metamaterials. (d) The recorded tem-
poral waveforms of the terahertz electric fields that were
transmitted through a sapphire reference and the disconnected,
connected, and resistive metamaterials. The curves are vertically
offset by 2 units for the sake of clarity.

PRL 114, 237401 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
12 JUNE 2015

237401-4



strongly frequency-dependent response of the resonant
structure. The phenomenon reported here is universal,
because it is based on the self-duality of the system.
Thus, it is expected to play an important role in a broad
range of the electromagnetic spectrum and to be helpful for
practical applications such as designing broadband meta-
materials. In addition, the flat transmission and reflection
characteristics of the self-complementary screens are appli-
cable to broadband coherent perfect absorption in artificial
structures [23,32]. We note that there is no theoretical
limitation on the size of the resistive sheets and that the
energy of the incoming radiation can be concentrated on
highly subwavelength regions; thus, this has the potential to
enhance nonlinear phenomena and light-harvesting appli-
cations. Finally, we point out that similar nearly flat
transmission spectra in finite frequency ranges have been
observed in thin metal films close to the metal-insulator
transition, where metal islands are randomly connected by
lossy narrow necks [33,34]. Although these involve imper-
fections such as randomness, broken mirror symmetry, and
material dispersion, they can be regarded as statistically and
approximately self-dual screens. Thus, the perspective of
this Letter provides another physical insight into their
behavior, beyond the conventional view from effective
medium theory [35].

This study was deeply inspired by ideas of M. Hangyo of
Osaka University, who passed away recently. The authors
gratefully acknowledge fruitful discussions with K. Takano
and Y. Tanaka and their experimental support. We thank F.
Miyamaru for his technical advice in the THz-TDS experi-
ments. We are also grateful to R. C. McPhedran for a useful
comment at a conference held in Bordeaux and to H.
Nakano for giving us information on a research report.
This work was supported in part by JSPS KAKENHI
Grants No. 22109004, No. 25790065, and No. 25287101.
The samples were prepared with the help of Kyoto
University Nano Technology Hub in the
“Nanotechnology Platform Project” sponsored by MEXT
of Japan. Y. U. and Y. N. were supported by JSPS Research
Fellowships for Young Scientists.

*urade@giga.kuee.kyoto‑u.ac.jp
†kitano@kuee.kyoto‑u.ac.jp

[1] K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, New J. Phys. 15,
033026 (2013).

[2] E. Alvarez, L. Alvarez-Gaume, and Y. Lozano, Nucl. Phys.
B (Proc. Suppl.) 41, 1 (1995).

[3] C. Desoer and E. Kuh, Basic Circuit Theory (McGraw-Hill
Kogakusha, Tokyo, 1969).

[4] H. A. Kramers and G. H.Wannier, Phys. Rev. 60, 252 (1941).
[5] J. B. Keller, J. Math. Phys. (N.Y.) 5, 548 (1964); A. M.

Dykhne, Zh. Eksp. Teor. Fiz. 59, 110 (1970) [Sov. Phys.
JETP 32, 63 (1971)].

[6] P. M. Lin, IEEE Trans. Circuit Theory 14, 172 (1967).

[7] Y. Mushiake, Self-Complementary Antennas: Principle of
Self-Complementarity for Constant Impedance (Springer,
London, 1996).

[8] I. Lindell, A. Sihvola, P. Yla-Oijala, and H. Wallen, IEEE
Trans. Antennas Propag. 57, 2725 (2009).

[9] M. Senechal, Comput. Math. Appl. 16, 545 (1988).
[10] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley,

New York, 1998).
[11] H. Nakano, in Modern Antenna Handbook, edited by C. A.

Balanis (Wiley, New York, 2008), Chap. 6, pp. 263–324.
[12] K. Kempa, Phys. Status Solidi RRL 4, 218 (2010).
[13] P.-Y. Chen, C. Argyropoulos, and A. Alù, Phys. Rev. Lett.

111, 233001 (2013).
[14] R. C. Compton, J. C. Macfarlane, L. B. Whitbourn, M. M.

Blanco, and R. C. McPhedran, Opt. Acta 31, 515
(1984).

[15] R. Singh, C. Rockstuhl, C. Menzel, T. P. Meyrath, M. He, H.
Giessen, F. Lederer, and W. Zhang, Opt. Express 17, 9971
(2009).

[16] K. Takano, F. Miyamaru, K. Akiyama, H. Miyazaki, M.W.
Takeda, Y. Abe, Y. Tokuda, H. Ito, and M. Hangyo, Opt.
Express 22, 24787 (2014).

[17] J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, and R.
Zhao, Nat. Phys. 9, 518 (2013).

[18] P. Sheng and R. V. Kohn, Phys. Rev. B 26, 1331 (1982).
[19] J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J.

Youngs, New J. Phys. 12, 063007 (2010).
[20] S. A. Ramakrishna, P. Mandal, K. Jeyadheepan, N. Shukla,

S. Chakrabarti, M. Kadic, S. Enoch, and S. Guenneau, Phys.
Rev. B 84, 245424 (2011).

[21] Note that in circuit theory an infinite resistance corresponds
to an open circuit, and zero resistance corresponds to a short
circuit [3].

[22] C. E. Baum and B. K. Singaraju, Interaction Note No. 217,
Air Force Weapons Laboratory, Kirtland Air Force Base,
NM 87117, 1974.

[23] Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, Phys.
Rev. B 88, 205138 (2013).

[24] D. Grischkowsky, S. Keiding, M. van Exter, and Ch.
Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).

[25] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.114.237401, which in-
cludes Ref. [26], for the experimental details and additional
numerical simulations.

[26] S. A. Crooker, Rev. Sci. Instrum. 73, 3258 (2002).
[27] M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R.

Freeman, and F. A. Hegmann, Phys. Rev. B 76, 125408 (2007).
[28] A. K. Azad and W. Zhang, Opt. Lett. 30, 2945 (2005).
[29] R. Ulrich, Infrared Phys. 7, 37 (1967).
[30] D. Schurig, J. J. Mock, and D. R. Smith, Appl. Phys. Lett.

88, 041109 (2006).
[31] H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C.

Highstrete, M. Lee, and W. J. Padilla, Opt. Express 15, 1084
(2007).

[32] M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z.
Zhao, C. Wang, and X. Luo, Opt. Express 20, 2246 (2012).

[33] Y. Yagil and G. Deutscher, Thin Solid Films 152, 465
(1987).

[34] C. A. Davis, D. R. McKenzie, and R. C. McPhedran, Opt.
Commun. 85, 70 (1991).

[35] A. K. Sarychev, D. J. Bergman, and Y. Yagil, Phys. Rev. B
51, 5366 (1995).

PRL 114, 237401 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
12 JUNE 2015

237401-5

http://dx.doi.org/10.1088/1367-2630/15/3/033026
http://dx.doi.org/10.1088/1367-2630/15/3/033026
http://dx.doi.org/10.1016/0920-5632(95)00429-D
http://dx.doi.org/10.1016/0920-5632(95)00429-D
http://dx.doi.org/10.1103/PhysRev.60.252
http://dx.doi.org/10.1063/1.1704146
http://dx.doi.org/10.1109/TCT.1967.1082700
http://dx.doi.org/10.1109/TAP.2009.2027180
http://dx.doi.org/10.1109/TAP.2009.2027180
http://dx.doi.org/10.1016/0898-1221(88)90244-1
http://dx.doi.org/10.1002/pssr.201004266
http://dx.doi.org/10.1103/PhysRevLett.111.233001
http://dx.doi.org/10.1103/PhysRevLett.111.233001
http://dx.doi.org/10.1080/713821538
http://dx.doi.org/10.1080/713821538
http://dx.doi.org/10.1364/OE.17.009971
http://dx.doi.org/10.1364/OE.17.009971
http://dx.doi.org/10.1364/OE.22.024787
http://dx.doi.org/10.1364/OE.22.024787
http://dx.doi.org/10.1038/nphys2667
http://dx.doi.org/10.1103/PhysRevB.26.1331
http://dx.doi.org/10.1088/1367-2630/12/6/063007
http://dx.doi.org/10.1103/PhysRevB.84.245424
http://dx.doi.org/10.1103/PhysRevB.84.245424
http://dx.doi.org/10.1103/PhysRevB.88.205138
http://dx.doi.org/10.1103/PhysRevB.88.205138
http://dx.doi.org/10.1364/JOSAB.7.002006
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.237401
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.237401
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.237401
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.237401
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.237401
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.237401
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.237401
http://dx.doi.org/10.1063/1.1498904
http://dx.doi.org/10.1103/PhysRevB.76.125408
http://dx.doi.org/10.1364/OL.30.002945
http://dx.doi.org/10.1016/0020-0891(67)90028-0
http://dx.doi.org/10.1063/1.2166681
http://dx.doi.org/10.1063/1.2166681
http://dx.doi.org/10.1364/OE.15.001084
http://dx.doi.org/10.1364/OE.15.001084
http://dx.doi.org/10.1364/OE.20.002246
http://dx.doi.org/10.1016/0040-6090(87)90262-8
http://dx.doi.org/10.1016/0040-6090(87)90262-8
http://dx.doi.org/10.1016/0030-4018(91)90054-H
http://dx.doi.org/10.1016/0030-4018(91)90054-H
http://dx.doi.org/10.1103/PhysRevB.51.5366
http://dx.doi.org/10.1103/PhysRevB.51.5366

