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Inspired by the recent experimental observation of topological superconductivity in ferromagnetic
chains, we consider a dilute 2D lattice of magnetic atoms deposited on top of a superconducting surface
with a Rashba spin-orbit coupling. We show that the studied system supports a generalization of px þ ipy

superconductivity and that its topological phase diagram contains Chern numbers higher than ξ=að≫ 1Þ,
where ξ is the superconducting coherence length and a is the distance between the magnetic atoms. The
signatures of nontrivial topology can be observed by STM spectroscopy in finite-size islands.
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Introduction.—The recent experiment reporting signa-
tures of topological superconductivity in magnetic chains,
consisting of arrays of magnetic atoms on top of a super-
conductor, has opened up a remarkable chapter in the
pursuit of novel topological phases of matter [1]. Promising
signatures of topological superconductivity and Majorana
bound states have previously been reported in nanowire
setups [2–5], although the later analysis of the zero-bias
peak attributed to Majorana states has revealed a number of
alternative explanations. The groundbreaking experiment
in magnetic chains directly demonstrated that the midgap
states are localized at the ends of the chain, corroborating
the topological character of these states. These develop-
ments are important since realization of topological super-
conductivity in 1D networks [6,7] would open up a route
towards topological quantum computation [8].
Motivated by the recent experiment and anticipating

future developments, we consider a 2D lattice of ferro-
magnetic magnetic moments on a 2D superconducting
surface with a Rashba spin-orbit coupling. Magnetic
moments bind Yu-Shiba-Rusinov subgap states [9–13]
with wave functions decaying as e−r=ξ=r1=2. Therefore
the Shiba states have strong overlap with a large number of
neighboring sites when a < ξ, where ξ is the superconduct-
ing coherence length and a is the lattice constant of the
magnetic atoms. In the regime where the direct overlap of
the orbitals of the magnetic atoms is negligible, the
hybridization of the Shiba states still enable a subgap band
formation. Following the treatments in Refs. [14–16], we
derive an effective long-range 2D hopping model and study
its topological properties in the deep-dilute impurity
regime. The characteristic energy scales of the system
are the isolated Shiba energy ε0 and the hybridization
energy Δ=ðkFaÞ1=2 of two impurities. We study the
topological phase diagram as a function of these parameters
by evaluating Chern numbers classifying the phases. In the
physically relevant circumstances the distance between
adjacent magnetic moments satisfies ξ=a ∼ 10 −103, so

the effective Hamiltonian describing the Shiba lattice
includes long hoppings between Oðξ=aÞ nearest neighbors
before the exponential suppression cuts them off. The
detailed properties of the 1D long-range Shiba models
[14–21] are known to have important differences compared
to the short-range toy models [22–25]. We show that the
competition between a large number of long-range hopping
terms gives rise to a complicated Chern number hierarchy.
The studied system generally supports phases with high
Chern numbers of the order of ξ=a which leads to a
significantly richer phase diagram compared to short-range
toy models [26]. Nonvanishing Chern numbers indicate the
existence of gapless edge states that could be probed in
STM experiments. We will show that the local density of
states (LDOS) in finite-size systems exhibits signatures of
the edge states, providing smoking-gun evidence of the
bulk topological order.
Model of ferromagnetic Shiba lattices.—We begin by

outlining the derivation of a low-energy model describing
the subgap spectrum of a 2D s-wave superconductor with
an array of magnetic impurities arranged in a 2D lattice
such as the one in Fig 1. The model is valid for general 2D
lattice geometries, though later we consider a square lattice.
The derivation proceeds similarly to the one presented in
Ref. [14] for a helical Shiba chain and that of the 1D

FIG. 1 (color online). Array of magnetic impurities on an s-
wave superconductor form a 2D Shiba lattice. This system
supports a generalized px þ ipy superconductivity with high
Chern numbers. The subgap density of states due to the gapless
edge states can be probed by STM spectroscopy.
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ferromagnetic chain in Ref. [16]. Therefore the details are
relegated to the Supplement Material [27].
The Bogoliubov–de Gennes (BdG) Hamiltonian describ-

ing the system is H ¼ HðbulkÞ þHðimpÞ, consisting of two
parts

HðbulkÞ ¼ τz½ξk þ αRðkyσx − kxσyÞ� þ Δτx;

HðimpÞ ¼ −J
X
j

Sj · σδðr − rjÞ; ð1Þ

where HðbulkÞ describes bulk electrons in a 2D system and
HðimpÞ represents the contribution of the magnetic atoms
forming a lattice. These expressions have been written
in the Nambu spinor basis Ψ̂ ¼ ðψ̂↑; ψ̂↓; ψ̂

†
↓;−ψ̂

†
↑ÞT and

the Pauli matrices τ and σ describe the particle-hole and the
spin degree of freedom. In the above equations ξk is the
kinetic energy, αR is the Rashba spin-orbit coupling, and Δ
is the superconducting pairing in the substrate. In the
absence of superconductivity the 2D bulk has two Rashba-
split Fermi surfaces with distinct Fermi momenta k�F ¼
kFð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p ∓ λÞ and the densities of states at the Fermi
level N � ¼ N ½1 ∓ λ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
�. Here we have defined a

dimensionless spin-orbit strength λ ¼ αR=ðℏvFÞ, the den-
sity of statesN , and the Fermi velocity vF in the absence of
the Rashba coupling. Magnetic atoms, located at positions
rj, are characterized by their spin Sj and coupling to the
bulk electrons with the exchange coupling J. Motivated by
Ref. [1], we concentrate on the ferromagnetic ordering
where all Sj are perpendicular to the surface. After a
number of steps outlined in the Supplemental Material [27],
the BdG eigenvalue problem HΨ ¼ EΨ leads to the
relation

½Si · σ − JEð0Þ�ΨðriÞ ¼ −
X
j≠i

JEðri − rjÞΨðrjÞ; ð2Þ

where JEðrÞ ¼ JS
R

dk
ð2πÞ2 e

ik·r½E −HðbulkÞ
k �−1 and S ¼ jSjj.

Relation Eq. (2) provides a closed set of equations for the
spinor at the impurity positions.
Because of the doubling of the degrees of freedom in the

BdG formulation, a single magnetic atom will give rise to
two subgap bound states with energies �ε0 ¼ �Δ½ð1 −
α2Þ=ð1þ α2Þ� where α ¼ πN JS is the dimensionless
impurity strength. As discussed in Refs. [14,16,20], for a
deep-dilute impurity arrangement satisfying α ≈ 1 and
½1=ðkFaÞ1=2� ≪ 1 we can accurately study the Shiba bands
in the two-component basis Ψ0

jðrjÞ≡Ψ0
j ¼ (uðrjÞvðrjÞ)T

of decoupled impurity states at site rj. Here uðrjÞ and vðrjÞ
are the eigenstates to the single-impurity problem with
energies ε0 ≈ Δð1 − αÞ and −ε0.
Projecting Eq. (2) to the two basis states we obtain a

reduced problem HΨ0 ¼ EΨ0 where

Hij ¼
� hij Δij

ðΔijÞ† −hij

�
: ð3Þ

The effective BdG Hamiltonian, Eq. (3), is determined by
the matrices

hij ¼
�

ε0 i ¼ j

− Δ2

2
½~I−1 ðrijÞ þ ~Iþ1 ðrijÞ� i ≠ j

;

Δij ¼
� 0 i ¼ j

Δ
2
½~Iþ0 ðrijÞ − ~I−0 ðrijÞ� xij−iyijrij

i ≠ j
:

In the above expression rij ¼ jri − rjj, and xij and yij are
components of ri − rj ≡ ðxij; yijÞ. The hopping elements
are expressed in terms of the functions

~I�0 ðrÞ ¼
N �
N

ℜ½iJ1ðk�Frþ ir=ξÞ þH−1ðk�Frþ ir=ξÞ�;

~I�1 ðrÞ ¼
N �
N

1

Δ
ℜ½J0ðk�Frþ ir=ξÞ þ iH0ðk�Frþ ir=ξÞ�;

where Jn and Hn denote the Bessel and Struve functions of
order n, ξ ¼ ½ðvF

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
Þ=Δ� is the Rashba modified

coherence length and ℜ stands for the real part of the
expression on its right side. The effective model Eq. (3) is
valid for deep-lying energy states E ≪ Δ, with corrections
proportional to ðE=ΔÞ2.
The key ingredients of the low-energy description

[Eq. (3)] are the coexistence of superconductivity, ferro-
magnetic ordering, and the Rashba coupling, all of which
have been demonstrated in the recent experiment [1].
To appreciate the crucial role of the spin-orbit coupling
we note that Δij vanishes when αR ¼ 0. The pairing
function has the form Δij ¼ Δðxij − iyijÞfðrijÞ, where

fðrijÞ ¼ ½~Iþ0 ðrijÞ − ~I−0 ðrijÞ�=2. This indicates that the
low-energy description [Eq. (3)] has an odd-pairing sym-
metry Δij ¼ −Δji that generalizes the px þ ipy-type pair-
ing. An ordinary chiral p-wave pairing would result if
fðrijÞ was nonvanishing only for the nearest-neighbor
hopping on a square lattice. However, in the model
Eq. (3) the normal hopping and the pairing function decay
as fðrÞ ∝ ðe−r=ξ=r1=2Þ [27], so in the physically relevant
case ξ=a ∼ 10 −103 the model includes non-negligible
hopping between dozens or hundreds of nearest neighbors.
The relation between the model Eq. (3) and a 2D chiral p-
wave superconductor is similar to the relation between the
long-range 1D Shiba models and Kitaev’s toy model [28].
Since a chiral p-wave pairing is the prototype of 2D
topological superconductivity, it is natural to expect that
the model Eq. (3) also supports topologically nontrivial
phases. Below we will discuss how the long-range hopping
has a dramatic impact on the topological properties and
leads to remarkably complex phase diagrams.
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Topological properties.—Topological properties of the
model Eq. (3) on a square lattice are conveniently studied in
momentum space. Defining Fourier transforms

dxðkÞ ¼ ℜ
X
j

Δijeikxxijþikyyij ;

dyðkÞ ¼ ℑ
X
j

Δijeikxxijþikyyij ;

dzðkÞ ¼
X
j

hijeikxxijþikyyij ;

the Hamiltonian in momentum space is expressed as
HðkÞ ¼ dðkÞ · σ with energies EðkÞ ¼ �jdj. The compo-
nents of d ¼ ðdx; dy; dzÞ do not allow a representation in
terms of the elementary functions. The topological phase
diagram of the studied model, which belongs to the
Altland-Zirnbauer symmetry class D [29], is revealed by
evaluating the Chern number

C ¼ 1

4π

Z
BZ

d2k
d · ∂kxd × ∂kyd

jdj3 ; ð4Þ

where the integration is performed over the Brillouin zone
kx; ky ∈ ½−ðπ=aÞ; ðπ=aÞ�. The Chern number takes integer
values and describes how many times the vector d̂ ¼ d=jdj
wraps around the unit sphere. Below we compute Chern
numbers as a function of the relevant parameters ε0 and
kFa. The bulk-boundary correspondence implies that
topological states with Chern number C ¼ q support jqj
branches of chiral gapless modes localized near the edge.
The sign of C determines the chirality of the edge modes. In
nonsuperconducting systems C determines a quantized
Hall conductance whereas in superconducting systems
only the thermal Hall conductance is quantized and the
edge states are propagating Majorana modes [30].
To understand qualitative features of the phase diagram,

it is important to consider the connection between the long-
range hopping and the Chern number. Intuitively this
can be understood by noting that the nth hopping in x
and y direction gives rise to such terms in di as
cosðnkx=yaÞ; sinðnkx=yaÞ that oscillate more rapidly with
increasing n. Thus, the number of times d̂ may cover the
unit sphere will generally increase with n. Employing the
asymptotic approximations for the Bessel and Struve
function [27], one can see that the nth hopping terms
decay as ½jΔj=ðkFaÞ1=2�ðe−an=ξ=n1=2Þ, so the decay is very
slow for the hopping range n < ξ=a. In addition to the
monotonic decay, the nth hopping terms oscillate rapidly
with wave vectors nk�Fa so the phase diagram results from
an effective competition of roughly Oðξ=aÞ different
hopping terms. In a recent study of toy models of two-
band Chern insulators it was discussed how models with
hopping range n may give rise to Chern numbers scaling
between n and n2 depending on the details of the model

[31]. Remarkably, the model Eq. (3) provides a concrete
physical realization of a topological superconductor where
Chern numbers are of the order of or larger than the
effective hopping range ξ=a, as in the toy insulator models
studied in Ref. [31].
In Figs. 2 and 3 we have plotted topological phase

diagrams as a function of the single-impurity energy ε0 and
parameter kFa controlling the hybridization of the impurity
states. Different Chern numbers classify different phases
that are separated by a closing of the energy gap determined
by the condition minkEðkÞ ¼ 0. One can clearly see that for
spin-orbit strength λ ¼ 0.05 corresponding to a momentum
splitting jk�F − kFj ¼ 0.05kF give rise to a large number of
different phases with high Chern numbers and topological
energy gaps Egap ¼ 2minkEðkÞ of the order of 0.1Δ. These
energies are still within the validity regime of the low-
energy description, Eq. (3). The number of different
topological phases and the highest Chern numbers having
non-negligible occurrence are of the order of ξ=a. In Fig. 4
we plot the spectrum of Eq. (3) calculated in a strip
geometry. Diagonalization in a semi-infinite system reveals
the existence of the edge states dictated by the bulk-
boundary correspondence.
Observable consequences and discussion.—Chern num-

bers classify different topological states and determine the
number of edge modes. The topological edge modes
support a quantized thermal conductance GT ¼ jCj ×G0

along the propagation direction, where G0 ¼ ðπ2k2BT=3hÞ.

FIG. 2 (color online). (a) Chern number phase diagram for
ξ=a ¼ 10 and λ ¼ 0.05. (b) Minimum of the positive energy
branch minkEðkÞ in units of Δ for the same parameters. Different
phases are separated by an energy gap closing.

FIG. 3 (color online). (a) Chern number phase diagram for
ξ=a ¼ 30 and λ ¼ 0.05. (b) Minimum of the positive energy
branch minkEðkÞ in units of Δ for the same parameters
used in (a).
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While this provides a method to distinguish different
phases such measurement requires high accuracy and is
challenging at the moment. A great advantage of Shiba
systems is that they can be probed locally by STM
spectroscopy. Signatures of Majorana wave functions
localized at the ends of magnetic chains were recently
observed. Analogously, the signatures of 2D topological
order could be detected through STM spectroscopy where
the edge states could be observed in the LDOS of finite
Shiba arrays as indicated in Fig. 1.
Diagonalization [Eq. (3)] in a finite square lattice

enables us to evaluate the LDOS defined by Nðr; EÞ ¼P
njunðrÞj2δðE − EnÞ þ jvnðrÞj2δðEþ EnÞ. Here unðrÞ

and vnðrÞ are the particle and hole components of the
eigenstate with energy En. In the absence of magnetic
atoms the system is in the trivial state and Nðr; EÞ ¼ 0 for
jEj < Δ. However, the topological edge modes of finite
Shiba lattices with C ≠ 0 show up in the subgap LDOS.
Away from the phase boundaries the bulk spectrum is
always gapped, while the edge states traverse the gap.
Therefore, the LDOS near the center of the gap E=Δ ≪ 1
should reveal the existence of topological edge states.
Furthermore, since the edge states are localized at the
sample edge we expect that the midgap LDOS Nðr; EÞ is
peaked when the coordinate r is located near the boundary
and suppressed in the bulk. As illustrated in Fig. 5, even
relatively small systems exhibit these important features.
STM spectroscopy is not sensitive to the precise value of
the Chern number of the state but can detect nonzero values
through the subgap LDOS. The fact that the low-lying
excitations are localized in the vicinity of the edges
provides strong evidence of the bulk topological order in
the system. As discussed in the Supplemental Material [27],
weak disorder does not destroy the physical picture. It is

also possible to extract qualitative information about
different topological states through the LDOS [27].
As discussed in Ref. [1], the next challenges after the

confirmation of the topological superconductivity in 1D
ferromagnetic chains include studies of topological properties
of 2D islands observed in the experimental setup. In the
experiment ironatomsaredenselypackeda fewÅapart so that
the atomic d orbitals overlap directly and give rise to the
ferromagnetic ordering. Our theory addresses the situation
where the distance betweenmagnetic moments is of the order
of nanometers and the direct overlap of atoms is negligible. In
this case the ferromagnetic ordering may be obtained due to
the interplay of Ruderman-Kittel-Kasuya-Yosida coupling,
Rashba coupling, and crystal field splitting [18]. The key
ingredients leading to the rich topological properties discov-
ered in our work are the coexistence of superconductivity, the
ferromagnetic ordering of adatoms, and the Rashba coupling
on the surface, all of which are confirmed in Ref. [1]. As
discussed above, the energy gaps for various Chern number
phases can reach a few multiples of 0.1Δ corresponding to
temperatures of the order of 1K. Considering that Pb surfaces
may give rise to a spin-orbit coupling comparable to the one
assumed in our calculations and that STM signatures of the
edgemodes are observable already in small systems, chances
of finding 2D topological superconductivity in ferromagnetic
islands seem very promising.

FIG. 4 (color online). Spectrum of an infinite strip as a function
of momentum kx corresponding to Chern number C ¼ 4. Both
edges support four chiral edge modes traversing the gap. Because
of the periodicity of the Brillouin zone, the edge states close to
kx ¼ −π=a and kx ¼ π=a describe the same set of states as
indicated by the arrows. The dotted line marks the gap edge
calculated for an infinite system. The figure corresponds to the
case ξ=a ¼ 10, ε0=Δ ¼ −0.25, kFa=π ¼ 3.56, λ ¼ 0.05 and the
length in the y direction is Ly ¼ 200a.

FIG. 5 (color online). Local density of states in a finite 70 × 70
lattice (in arbitrary units) corresponding to a bulk state with
C ¼ 3. All the energies are in the units of Δ and correspond to
tunneling voltages V ¼ E=e. Near the center of the gap the LDOS
is suppressed in the bulk but enhanced on the edges due to the
topological edge states. The figure corresponds to the case
ξ=a ¼ 10, ε0=Δ ¼ −0.22, kFa=π ¼ 4.9, λ ¼ 0.05.
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Summary and outlook.—Motivated by the recent exper-
imental discovery of topological superconductivity in
ferromagnetic chains, we studied a 2D ferromagnetic
Shiba lattices. We reported that these systems support a
generalized px þ ipy superconductivity with a large num-
ber of phases and Chern numbers higher than ξ=a ≫ 1
where ξ is the superconducting coherence length and a is
the Shiba lattice constant. As in the 1D case, the signatures
of topological edge states can be observed by STM
spectroscopy. A more systematic exploration of phase
diagrams, the topological properties of different lattice
geometries and lattice imperfections, and exploration of
different scenarios to tune the topological properties are left
for future studies.
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