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The origin of nonlinear dynamics traces back to the study of the dynamics of planets with the seminal
work of Poincaré at the end of the nineteenth century: Les Méthodes Nouvelles de la Mécanique Céleste,
Vols. 1–3 (Gauthier Villars, Paris, 1899). In his work he introduced a methodology fruitful for investigating
the dynamical properties of complex systems, which led to the so-called “Poincaré surface of section,”
which allows one to capture the global dynamical properties of a system, characterized by fixed points and
separatrices with respect to regular and chaotic motion. For two-dimensional phase space (one degree of
freedom) this approach has been extremely useful and applied to particle accelerators for controlling their
beam dynamics as of the second half of the twentieth century. We describe here an extension of the concept
of 1D fixed points to fixed lines in two dimensions. These structures become the fundamental entities for
characterizing the nonlinear motion in the four-dimensional phase space (two degrees of freedom).
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For experimental physicists, accelerators are devices that
provide particle beams to a detector, or that guide two
beams to collide with one another to study fundamental
properties of matter at a subatomic level. It is less known
that particles in a circular accelerator are subject to violent
and complex dynamics, which in many aspects resemble
and even exceed the complexity of the dynamics of planet
motion around the sun. In accelerators, magnet nonlinear-
ities are responsible for the nonlinear dynamics in one, two,
and even three degrees of freedom. The characterization of
the nonlinear motion is usually expressed in terms of the
stability properties and trajectory deformation. Accelerator
physicists have become familiar with properties such as
dynamic aperture, fixed points, island and separatrices
structures as the requirement of controlling the beam
dynamics. This has led to the development of nonlinear
dynamics “for accelerators” [1–4]. Particle motion can
either be regular or chaotic, the latter leading to particle
loss. The characterization of the regular motion and the
onset of chaotic motion are therefore of utmost importance
for particle accelerators [1,2].
In absence of nonlinearities the horizontal linear motion

is governed by a harmonic oscillator equation of motion
x00 þ kxðsÞx ¼ 0, where kxðsÞ is the strength of the linear
focusing or defocusing elements in the accelerator, result-
ing in the linear horizontal tune (phase advance per turn),
Qx ¼ ð1=2πÞ R L

0 βxðsÞ−1ds, with βxðsÞ the well-known
horizontal β function incorporating the focusing system

kxðsÞ, and L the length of the circular accelerator [5].
The particle trajectories in the 2D phase space are lines
around a closed orbit which typically is located at zero
amplitude. In the Poincaré surface of section [6] (any fixed
longitudinal location s) one finds ellipses around the
closed orbit.
The introduction of nonlinearities disturbs this simple and

elegant structure. The motion of a particle is governed by the
nonlinear equation x00 þ kxðsÞx ¼ −1=n! ½knðsÞxn�, with
knðsÞ the strength of the nonlinearity of order n. The topology
of the orbits in the Poincaré surface of section is determined
by the tune Qx, which is now defined as the averaged phase
advance per turn. ForQx close to the resonance ðnþ 1ÞQx ¼
m, the topology of the orbits changes and some of the
Courant-Snyder ellipses are broken into higher-order closed
orbits at nonzero amplitudes (fixed points) and the particle
motion in its vicinity is restricted to islands around the fixed
points. Last, at some distance to these fixed points a
separatrices is reached that separates the island motion from
the nominal motion around the closed orbit at zero amplitude.
It is interesting to note that chaotic motion develops around
the separatrices due to unavoidable additional resonances as
originally described by Poincaré in 1899 [6].
The Poincaré surface of section method allows a visual

representation of the dynamics of a particle, which is useful
for describing the motion. The control of the islands and
separatrices is even used for operational schemes like the
slow resonance extraction [7].
The importance of the nonlinear dynamics in accelerators

has recently been emphasized with the advent of new
accelerator projects [8,9], which have turned the focus on
machines, where properties vary with time. The phenome-
non of 1D resonance crossing for high-intensity beams has
been explained in terms of trapping and scattering of a
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particle interacting with islands, and extensive experimental
and numerical studies have characterized the case of 1D
dynamics [10,11].
The reduction of the dynamics to one degree of freedom

allows a visual representation of the main feature of the
dynamics in terms of islands and fixed points. However,
the dynamics in accelerators is actually determined in two
and three degrees of freedom and the resonances excited by
nonlinear components in an accelerator are found for the
horizontal and vertical tunes Qx;Qy, satisfying the relation
nxQx þ nyQy ¼ N. A theory describing the dynamics of
a particle in two dimensions was developed in the 1950s by
Schoch [4]. This theory describes how the strength of
magnet nonlinearities is related to the resonant behavior
of a particle: for nonlinear field components distributed
around the circular accelerator, the main properties of a
resonance can be related to a quantity called the “driving
term.” The theory predicts the resonance stop band as a
function of the driving term. Despite this enormous progress,
it remains unexplained how resonance structures in two or
more degrees of freedom actually govern the phase space.
The purpose of this Letter is to shed some new light on
this issue.
The discussion of the dynamics in terms of islands and

fixed points is now more difficult, the Poincaré surface of
section is a 4D phase space and no longer easily under-
standable. One can try to predict the beam evolution via
computer simulations to circumvent the complicated
theoretical analysis. In fact, the actual development of
the treatment of nonlinear dynamics in accelerators is quite
mature [12], and the present level of computer power
allows demanding numerical investigation. However, the
increase of computer power does not help in understanding
what really happens in the multidimensional phase space if
we do not know what to look for in the complex dynamics
unless guided by a deeper theoretical understanding of
these complexities.
In the following an approach is presented on how to

characterize the dynamics in the proximity of a coupled 2D
resonance in a rigorous analytic way. The technical details of
this approach will be discussed in an upcoming article [13].
The simplest situation of coupled nonlinear dynamics is

found when considering a circular accelerator affected by a
sequence of thin sextupoles. In this case, the equations of
motion reads

d2x
ds2

þ kxðsÞx ¼ −
1

2
k2ðsÞðx2 − y2Þ;

d2y
ds2

þ kyðsÞy ¼ k2ðsÞxy: ð1Þ
The solution of this equation can be written as

xðsÞ ¼
ffiffiffiffiffiffiffiffiffi
βxax

p
cos½ϕxðsÞ þ φx�;

yðsÞ ¼
ffiffiffiffiffiffiffiffiffi
βyay

q
cos½ϕyðsÞ þ φy�; ð2Þ

where βx; βy are the well-known horizontal and vertical
beta functions, and the phase advances are ϕxðsÞ ¼R
s
0 βxðsÞ−1ds;ϕyðsÞ ¼

R
s
0 βyðsÞ−1ds. The function k2ðsÞ

describes the local strength of the nonlinear errors, which
excite the resonanceQx þ 2Qy ¼ N, with N the harmonics
of the distribution of the errors.
The quantities ax; ay;φx;φy are the constants of linear

motion. However, if we consider the system described by
Eq. (1), and search for solutions of the form of Eq. (2), then
ax; ay;φx;φy are forced to become time dependent. The
evolution of these “new” variables is governed by a
Hamiltonian composed by a large number of harmonics,
each of which has frequencies obtained as a combination of
the tunes Qx;Qy. This is the Hamiltonian of the nonlinear
terms in Eq. (1). The situation is hopelessly complex for an
analytic treatment when all these harmonics should be
included into the equations of motion. However, for a
machine set close to the resonance Qx þ 2Qy ¼ N, the
harmonics with frequency Qx þ 2Qy − N become very
slow. As a result, only two slowly varying harmonics
remain while the others “average out” quickly and are
ignored. This approximation is valid close to the resonance,
and for reasonable small nonlinear errors. We then take the
truncated Hamiltonian (slowly varying) as an approxima-
tion of the real Hamiltonian when the system is in
proximity to a third order 2D coupled resonance. The
same procedure is used in Refs. [4,14]. In our study we find
that Nj sextupolar errors lead to the slowly varying
Hamiltonian

Hs1 ¼ Λ
ffiffiffiffiffi
ax

p
ay cos

�
αþ 2πΔr

s
L
þ φx þ 2φy

�
; ð3Þ

with Δr ¼ Qx þ 2Qy − N defined as the distance of the
tunes Qx;Qy to the resonance. Here, Λ is the driving term
of the resonance, and α is its orientation in the complex
plane. Both these factors incorporate the effect of the
distributed sextupolar errors of integrated strength K2j

located at position sj. The quantity Λ, and the angle α
determine the dynamics in this approximation.
The dynamics of the variables ax; ay;φx;φy, is given by

the canonical equations of the Hamiltonian 2Hs1, where
Hs1 is the slowly varying Hamiltonian Eq. (3), which is
time dependent, and a procedure to remove the time
dependency is desirable in order to identify invariants of
motion.
Differently from previous works, we find that there is an

infinite set of canonical transformations of the form

~ax ¼ ax;

~φx ¼ φx þ tx2πΔrs=L;

~ay ¼ ay;

~φy ¼ φy þ ty2πΔrs=L; ð4Þ
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all suitable for creating a system of canonical coordinates
~ax; ~φx; ~ay; ~φy, where the Hamiltonian Eq. (3) becomes time
independent. The coefficients tx; ty shall here satisfy the
condition tx þ 2ty ¼ 1. Therefore, by assigning a value to
tx ¼ τ we completely fix one possible system of canonical
coordinates.
In the system τ, the new coordinates are subjected to the

dynamics of a time-independent Hamiltonian via the
canonical equations. The simplest solution of the canonical
equations ~a0x ¼ ~φ0

x ¼ ~a0y ¼ ~φ0
y ¼ 0 is found to be

~ay ¼
ð2πΔrÞ2
4Λ2L2

τð1 − τÞ;

~ax ¼
ð2πΔrÞ2
16Λ2L2

ð1 − τÞ2;
~φx þ 2 ~φy þ α ¼ πM; ð5Þ

with M an integer of either 0 or 1. The values of τ are
limited to 0 ≤ τ ≤ 1.
Any one of these solutions ~ax; ~φx; ~ay; ~φy can be trans-

formed to the laboratory frame via Eqs. (4) and (2) at a
specific longitudinal position along the accelerator. To
simplify the discussion, but without losing generality, we
take the x-y projection of the Poincaré surface of section
and find that the particle coordinates lie on the curve

xðtÞ ¼
ffiffiffiffiffiffiffiffiffi
βxax

p
cosð−2t − αþ πMÞ;

yðtÞ ¼
ffiffiffiffiffiffiffiffiffi
βyay

q
cosðtÞ; ð6Þ

where t is a variable that parametrizes the curve. We find
that after each accelerator turn an initial point ðx; x0; y; y0Þ0,
identified by ~ax; ~ay; ~φx; ~φy and satisfying Eq. (5), is
mapped to another point ðx; x0; y; y0Þ1, and all such points
belong to a closed one-dimensional curve, which in the x-y
projection has the analytic form of Eq. (6). At the same time
ðx; x0; y; y0Þ1 in the system τ keep unchanged the value of
the variables ~ax; ~ay; ~φx; ~φy. Similar results can be found in
any projection of the Poincaré surface of section.
We call this curve a 2D “fixed line” [15] based on its

property that the particle coordinates will remain on this
curve indefinitely. In analogy to 1D fixed points, we find
that 2D fixed lines can be either stable or unstable. Figure 1
shows an example of several projections of a Poincaré
surface of section of a stable 2D fixed line. For convenience
we show the classical horizontal and vertical projections
x-x0, y-y0 in Figs. 1(a) and 1(b), which describe circles
guaranteeing that ~ax; ~ay are constant. Figure 1(c) shows the
x-y projection and 1(d) shows the x0-y0 projection.
We have therefore reached the situation where in each

system τ there is one stationary point that in the laboratory
frame becomes a distinct fixed line. Therefore, we can
conclude that the 4D phase space is populated by an infinite
set of fixed lines dependent on the parameter τ. These lines

are all close to one another so as to form a complex
structure in the 4D phase space.
It is an interesting feature of the canonical equations in the

system τ that they lead to the invariant of motion
2~ax − ~ay ¼ C. If we consider the same particle in another
system τ0, the value ofC; ~ax, and ~ay remain the same. This is
due to the fact that the parameter τ does not play a physical
role, while the variables ~ax; ~ay have a physical meaning of
particle emittance (or action). This is not the case for the
variables ~φx; ~φy, which depend on τ. As the physics should
not be dependent on τ, we combine ~φx; ~φy to eliminate tx; ty
by taking Ω ¼ ~φx þ 2 ~φy: Ω has the same value in any
system τ [see Eq. (4)]. This means that the variables ~ax;Ω
are more convenient to characterize the dynamics as they
are independent of τ. Reexpressing the time independent
Hamiltonian of any system τ into these variables we find a
function neither dependent on time nor on τ, i.e., an invariant
of motion Iðax;ΩÞ. In the laboratory frame we can recast
it in conveniently “scaled” coordinates as

Îðâx;ΩÞ ¼ μ
ffiffiffiffiffi
âx

p
ðâx − ξÞ cosðΩþ αÞ þ âx; ð7Þ

with âx ¼ ½4LΛ=ð2πΔrÞ�2ax, ây ¼ ½4LΛ=ð2πΔrÞ�2ay, ξ ¼
½4LΛ=ð2πΔrÞ�2C=2, and μ ¼ Δr=jΔrj. Given the initial
coordinates of a particle, we fix Î; ξ; hence, the associated
level line of Eq. (7) yields the particle trajectory in âx;Ω
coordinates. This allows us to predict the stability of all
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FIG. 1 (color online). The 2D fixed line as predicted by the
theory (red dots) and position of a particle from simulations
(black markers). The circular shape in (a),(b) shows that ~ax; ~ay are
constants of motion. In (c),(d) is clearly visible the unusual
pattern deriving from the coupling created by the resonance.
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particles according to the value of the two invariants Î; ξ.
An analysis of the stability of motion using Eq. (7) reveals
that the edge of stability of particles is consistent with the
position of the fixed lines. This is shown in part (a) of Fig. 2
where the set of the fixed lines described by Eq. (5) forms a
paraboliclike curve (blue and pink) in the (âx; ây) plane. If a
particle has initial values âx; ây “inside” the set of the fixed
lines, its stability depends on the value ofΩ. The pink line is
the collection of âx; ây with unstable fixed lines, and the blue
line is the collection of the values âx; ây with stable fixed
lines. The color code in the pictures provides the set of
allowed Ω as a function of âx; ây. This range is determined
by the level line associated with the invariant Î of a fixed line
according to the following procedure: given a particle with
certain âx; ây values we find ξ ¼ âx − ây=2, which identifies
a line that always intercept the pink line collection of the
unstable fixed lines. To that interception point corresponds
one value of τ, and one value Îfl of the invariant Eq. (7). The
anglesΩ for which the motion of a particle with initial ax; ay
is stable are found in an interval of size 2ΔΩ, with

ΔΩðâx; âyÞ ¼ ar cos

�
1

μ

Îfl − âxffiffiffiffiffi
âx

p ðâx − ξÞ
�
; ð8Þ

where we take 0 ≤ ΔΩ ≤ π. Part (a) of Fig. 2 shows a red
wide region where ΔΩ ¼ π; there Ω can assume any value
and the particle remains stable, other regions of the picture
exhibit partial stability. Part (b) of Fig. 2 shows a comparison
with computer simulation for the case with one single
sextupolar error. The widening of the stability domain shown
in Fig. 2(b) is due to the effect of higher harmonics, which
are all excited by a single localized error. Further simulations
show that distributed errors generated to mainly excite a
single harmonic component yield a better agreement
between theory and simulations.
Figure 2 shows another interesting feature: particles

close to the ây axis can be stable even “outside” the border
of the stable 2D fixed lines. This demonstrates the existence
of stable 2D “tori” as analogous to the stable “islands” in
1D dynamics. Contrary to the 1D case, these stable tori
exist even without stabilizing detuning terms from higher-
order multipolar components.
In conclusion, in proximity to the coupled 2D resonance

Qx þ 2Qy ¼ N there are 2D fixed lines that are equivalent
to fixed points in one dimension. These lines are one-
dimensional closed curves in the 4D phase space. Their
number is infinite, and they may either be stable or
unstable. Our analysis is focused on distributions of
sextupolar errors around a circular machine and should
be seen as a general extension of previous studies [16,17].
Our study links the stability domain to the existence of
fixed lines. We also find that the properties of stability
define a scaling law, naturally associated with the scaling
coefficient ½4LΛ=ð2πΔrÞ�2. The general properties are
summarized in Fig. 2 expressed in scaled emittances.
The full derivation of this theory will be part of a future
publication [13].
This study constitutes a milestone for the studies with

space charge and the process of 2D fixed line crossing and
trapping phenomena in two dimensions induced by space
charge, and in conjunction with synchrotron oscillation.
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