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Self-sustained reaction fronts in a disordered medium subject to an external flow display self-affine
roughening, pinning, and depinning transitions. We measure spatial and temporal fluctuations of the front
in 1þ 1 dimensions, controlled by a single parameter, the mean flow velocity. Three distinct universality
classes are observed, consistent with the Kardar-Parisi-Zhang (KPZ) class for fast advancing or receding
fronts, the quenched KPZ class (positive-qKPZ) when the mean flow approximately cancels the reaction
rate, and the negative-qKPZ class for slowly receding fronts. Both qKPZ classes exhibit distinct depinning
transitions, in agreement with the theory.
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Growing interfaces are ubiquitous in nature, appearing in
situations as different as bacterial colonies [1], solidifica-
tion [2], atomic layer deposition [3,4], liquid interfaces in
porous media [5–7], or crack propagation in heterogeneous
materials [8,9]. The formation of scale-free structures in
these systems raises the important question of universality
in out-of-equilibrium phenomena.
In this Letter, we consider the propagation of a reaction

front inside a porous medium. Resulting from the balance
between the molecular diffusionDm and the reaction rate ~α,
autocatalytic reactions can develop a traveling front. In the
absence of an externally imposed flow, the reaction front
develops into a flat horizontal front, propagating with a
constant velocity Vχ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm ~α=2

p
, and a stationary con-

centration profile of width lχ ¼ Dm=Vχ . When coupled
with the heterogeneous flow field of the porous medium,
the fronts become rough, and modify their behavior
accordingly with the flow strength and mean orientation
relative to the chemical reaction direction. They propagate
either downstream or upstream, or can remain frozen over a
range of counterflow rates, delimited by two distinct
depinning transitions [10,11]. Until now, however, their
universality classes have not been identified.
Using both experimental and numerical approaches, we

investigate their spatial and temporal scaling over the whole
range of the externally imposed flow. In the vicinity of both
depinning points, these reaction fronts display transient
static configurations with distinct morphologies depending
on the front propagation direction, displayed in Fig. 1. We
show that this is a well-controlled system which encom-
passes several universality classes.
Two important classes predicted by the theory, and

discussed below, are (i) nonlinear stochastic growth gov-
erned by the (thermal) Kardar-Parisi-Zhang (KPZ) equa-
tion (1), and (ii) growth where both the nonlinearity and
quenched disorder are present, described by the quenched

KPZ (qKPZ) equation (2). It divides into two subclasses,
positive qKPZ and negative qKPZ, depending on the sign
of the nonlinearity λ.
It has been difficult to find unambiguous experimental

realizations, due to long-range effects, quenched disorder,
and a mixing of (i) and (ii) [1,12–14]. Recently, experi-
ments on turbulent liquid crystals [13,15] made a precise
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FIG. 1 (color online). Successive experimental fronts at
constant time intervals. Color represents local front velocity, in
units of imposed flow velocity Ū. Top: upward propagating
front near Fþ

c (F ¼ 0.56). Bottom: backward propagating
front near F−

c (F ¼ −1.24).
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connection with the theory of the KPZ class experiencing a
revolution of its own [16]. The (positive) qKPZ class
[17,18] and both KPZ and qKPZ classes in evaporating
colloidal suspensions [14] were observed. Remarkably, in
the present system, by tuning a single parameter F, one can
observe all three classes.
The KPZ equation [19] was proposed as a generic model

for an interface growing along its local normal,

∂hðx; tÞ
∂t ¼ ν∇2hðx; tÞ þ λ

2
½∇hðx; tÞ�2 þ ηðx; tÞ þ f: ð1Þ

Its height hðx; tÞ is along the vertical axis, ν an effective
stiffness due to diffusion, λ the nonlinearity, and
ηðx; tÞ a Gaussian white noise with ηðx; tÞ ¼ 0 and
ηðx; tÞηðx0; t0Þ ¼ 2Dδðx − x0Þδðt − t0Þ. f is an applied
force, and up to a shift, proportional to the experimental
applied force F as shown below. The surface
can be characterized by two scaling exponents, the rough-
ness α, and the growth exponent β, defined via

½hðx; tÞ − hðx0; tÞ�2 ∼ jx − x0j2α and ½hðx; tÞ − hðx; t0Þ�2∼
jt − t0j2β. In d ¼ 1þ 1 dimensions, αKPZ ¼ 1=2 and
βKPZ ¼ 1=3 [19].
In a heterogeneous medium, the “noise” acquires a static

quenched component, described by the qKPZ equa-
tion [20]:

∂hðx; tÞ
∂t ¼ ν∇2hðx; tÞ þ λ

2
½∇hðx; tÞ�2 þ η̄(x; hðx; tÞ)þ f:

ð2Þ

The case λ ¼ 0 models a number of systems, and is a
distinct universality class (quenched Edwards-Wilkinson)
[21] but does not seem to be relevant here (it predicts
β ≈ 0.87 and α > 1.) In the KPZ equation (1) one can
eliminate the driving by setting hðx; tÞ ¼ ftþ ~hðx; tÞ.
Changing then ~hðx; tÞ → − ~hðx; tÞ reverses the sign of
the nonlinear term λ, which is thus unimportant. By
contrast, the qKPZ equation (2) does not allow for this
change, since the term η̄½x; hðx; tÞ� is not invariant. The
driving force f is thus a new parameter of the problem, and
its sign (relative to the sign of λ) matters. If the disorder is
statistically invariant by parity, i.e., if η̄ðx;−hÞ has the same
properties as η̄ðx; hÞ, Eq. (2) is invariant under f → −f,
hðx; tÞ → −hðx; tÞ, and λ → −λ, leading to two cases:
Positive qKPZ when λ and f have the same sign, and
negative qKPZ when they have opposite signs.
In the moving phase, qKPZ of either sign crosses over to

KPZ at large scales. This is seen, e.g., in the limit of large
mean interface velocity v ¼ ∂thðx; tÞ: Consider Eq. (2)
with white noise η̄ðx; hÞη̄ðx0; h0Þ ¼ 2D̄δðx − x0Þδðh − h0Þ
and perform the change hðx; tÞ → vtþ ~hðx; tÞ. The dis-
order then becomes

η̄ðx; vtþ ~hðx; tÞÞ ≈ η̄ðx; vtÞ; ð3Þ

i.e., the same noise as in the KPZ equation (1), identifying
D ¼ D̄=v. As v is decreased, the crossover from qKPZ at
short scales to KPZ occurs at larger and larger scales.
The positive qKPZ equation exhibits a depinning tran-

sition [20,22], well characterized in d ¼ 1þ 1. The mean
interface velocity vanishes for f < fþc ; for f > fþc it moves
with velocity v ∼ ðf − fþc Þθ. At fc the pinned interface
outlines a transversal path on a directed percolation (DP)
cluster [17,18,23] with roughness αDP ≃ 0.63, and a growth
exponent βDP ≃ 0.63. As discussed above, the quenched
nature of the noise is relevant only when f is close to fc.
The predictions for the negative qKPZ class are different

[24]. In the pinned phase, λ > 0 and negative f > f−c , the
interface forms sawtooth configurations (see Fig. 1, bot-
tom) where alternating nonzero local average slopes j∇hj
help the system to remain pinned. As f decreases, the
sawtooth slopes increase until there are discontinuous
jumps at f−c of both the average slope (back to zero)
and the velocity v, well evident in our experiment; see
Fig. 2(a). Inside the pinned phase, the transitory dynamics
is similar to positive qKPZ [25], and the depinning was
analyzed via a mapping to the first layer Polynuclear
growth (PNG) model [26], a close cousin of KPZ.
Our experiment is made with the iodate arsenous acid

reaction, autocatalytic in iodide, with the concentration
values ½IO−

3 � ¼ 7.5 mM and ½H3AsO3�0 ¼ 25 mM, such
that the arsenous acid is in excess [27,28]. The resulting
front has a velocity Vχ ≃ 11.2 μm=s, and a width
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FIG. 2 (color online). Front velocity Vf versus the applied
force F (F̂), in adverse flow (a) experiments (black dots with
error bars), (b) numerics. Dashed lines are linear
extrapolation of the advancing branch. To put all data on
one plot, axes are rescaled according to F → F=jFj1=2,
Vf → Vf=jVfj1=2. Inset: front velocity versus F̂ − F̂cþ . The
continuous line corresponds to vðF̂Þ ∝ ðF̂ − F̂cþÞ0.8�0.05.
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lχ ≃ 200 μm. The front position is visualized with poly-
vinyl alcohol colored by transient iodine production [29].
The disordered flow is generated with a 50% mixture of 1.5
and 2 mm diameters packed glass beads inside a transparent
(300 × 100 × 4 mm3) rectangular cell. A range of injectors
at the top of the cell can either suck out or inject unreacted
fluid parallel to the vertical. The bottom of the cell is dipped
into a container with reacted solution to start the reaction,
leading to a flat horizontal initial front. The front prop-
agates upwards in the absence of the flow, which is then
switched on once the desired vertical position is reached.
We extract the location hðx; tÞ of the front at a given
position x and time t from 700 × 1000 pixel digitized
images with a 12-bit Roper Coolsnap HQ video camera. To
enhance the statistics, we performed 3 to 6 different
realizations for each of the 30 values of the applied flow
velocity.
We define the control parameter as F ¼ ðŪ þ VχÞ=

Vχ þ f0, with Ū the mean flow velocity and f0 ≃ 0.38
an ad hoc constant [30], such that the front advances when
F > 0 or recedes when F < 0. Figure 2(a) displays the
normalized front velocity, v ¼ Vf=Vχ as a function of F. In
the absence of flow, when F ¼ 1þ f0, the reaction front
propagates through the beads with a smooth shape at a
constant velocity Vf ¼ V0 ¼ 0.8Vχ � 0.5 μm=s (see
Supplemental Material [30], movie 1). When the flow is
turned on, the front exhibits distinct self-affine scalings
depending on F, and quantified by the front width
wðΔxÞ ∼ ðΔxÞα, and the standard deviation of the temporal
height fluctuations wðΔtÞ ∼ ðΔtÞβ [30,31].
At large flow rates, when jFj > 2.5 in Fig. 2, Vf is a

linear function of F and the front propagates downstream
for both orientations of the mean flow (see Supplemental
Material [30], movies 2 and 3). Figure 3(a) shows the width
wðΔxÞ and wðΔtÞ of saturated fronts, i.e., such that l�ðtÞ ∼
L [31], determined for experiments realized at opposite
mean-flow orientations. They display both a similar

roughness α ¼ 0.47� 0.03, and α ¼ 0.53� 0.04, and
growth exponent β ¼ 0.32� 0.04 and β ¼ 0.37� 0.05
while t� ≈ T. As can be seen in Fig. 4(a), at large front
velocity of either orientation, the front exhibits scale-
invariant fluctuations with statistical properties in agree-
ment with the KPZ class and the theoretical discussion
around Eq. (3). In addition, since in the experiment D̄ ∼ Vf,
the expected KPZ noise D≃ D̄=Vf is almost independent
of Vf [30], and the amplitude of wðΔxÞ does not vary
significantly with F for a given flow orientation, as can be
seen in Fig. 3(a).
When F → 0, some regions of the front pin to the flow

heterogeneities. In this configuration, the front propagates
mainly upstream, from the bottom to the top of the cell,
while locally the front exhibits transiently static regions, as
shown in Fig. 1 (top). Note that the moving parts have a
larger slope than the arrested or slowly propagating ones,
leading to a lateral growth of the fronts in this regime
(Supplemental Material [30], movie 4). When the opposite
flow is amplified, the pinned portions become larger. The
value Fcþ for which the front eventually stops and remains
static is Fcþ ¼ 0.56� 0.05. In Figs. 3(c) and 3(d) for
F ¼ 0.58, the values α ¼ 0.66� 0.04 and β ¼ 0.61�
0.05, are consistent with the theoretically predicted expo-
nents of positive qKPZ, α ¼ β ¼ 0.63 (see Ref. [30] for
additional measurements), suggesting that the front under-
goes a depinning transition when F → Fcþ .
Finally, when F decreases below Fcþ, the transient front

propagation becomes very short. For F ≈ 0, the front is
static almost instantaneously after the flow is turned on
(Supplemental Material [30], movie 5). When F becomes
negative, the front propagates in the direction opposite to
the chemical reaction. For sufficiently small F,
−2.22≲ F ≲ 0, it quickly becomes static after a transient
propagation and displays a particular sawtooth pattern [10].
One notes in Fig. 1(b) that the front is slowed down or
arrested when it reaches a certain slope, resulting in facet
formation (Supplemental Material [30], movie). Another
depinning transition occurs at Fc− ≈ −2.22� 0.05, below
which triangular states become unstable and the front goes
back to a phase moving from the top to the bottom of the
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cell. As indicated in Fig. 4, these triangular shapes lead to a
different roughness exponent of the transiently moving
parts compared to the final static front as F → Fc− [30].
The roughness and growth exponents of propagating
regions have 0.62≲ α≲ 0.7 and 0.63≲ β ≲ 0.69, consis-
tent with the observations in Ref. [25]. However, the final
static front roughness is larger: 0.73≲ α ≲ 0.9, increasing
as the sawtooth slope rises when F → Fc− . Interestingly, a
crossover from β ≈ 0.65 to β ≈ 0.33 for larger scales is
visible in Fig. 3(d), underlining the second depinning
transition at Fc− . Close to Fc− , the front pins to pointlike
regions, while close to Fcþ the pinning regions extend
horizontally. This shows that receding fronts are consistent
with negative qKPZ, known for similar pinning processes
and interface morphologies [24,26,32]. This model also
predicts a first-order depinning transition, observed here as
a jump in the VfðFÞ curve.
To better understand the behavior close to the transitions,

lattice Boltzmann simulations were performed in a 2D
disordered porous medium (2048 × 2048 grid size), solv-
ing the convection-diffusion reaction and the Darcy-
Brinkman equations [11,30,33]. Figure 2(b) displays the
numerical front velocity versus F̂ ¼ ðŪ þ VχÞ=Vχ þ f̂0,
where hatted quantities denote parameters in the simula-
tions with f̂0 ¼ 0.256. In good agreement with the experi-
ments, two transitions occur at F̂c− ¼ −2.2� 0.2 and
F̂cþ ¼ 0.095� 0.015 and the velocity VfðF̂Þ is almost
linear in F̂ below the first transition and beyond the second
one. While the transition at F̂c− is very abrupt, the second
one at F̂cþ is more continuous. Moreover, the critical
behavior can be fitted [Fig. 2(b), inset] with a power law
VfðF̂Þ ∼ ðF̂ − F̂cþÞ0.8�0.05, with an exponent slightly larger
than the theoretical value 0.66 [17]. This is consistent with
a first-order transition at F̂c− and a second-order one at F̂cþ .
Shown in Fig. 5, the scaling exponents of the numerics are
also in good agreement with the theory of the thermal KPZ
class for large jF̂j. Near the depinning transitions at F̂cþ and
F̂c− , the roughness exponents α ¼ 0.65� 0.05 and α ¼
0.9� 0.05 are consistent with experiments and the positive
and negative qKPZ predictions. The remaining differences
in the qKPZ pinned phase are due to different initial
conditions: In the experiment, the fronts propagate without
flow (with their own roughness exponent at Ū ¼ 0) and
then the flow is switched on, whereas in the simulation the

initial front is flat (see Supplemental Material [30] for
details).
The good agreement between experiments, numerical

simulations, and theory for the different KPZ universality
classes can be understood through the eikonal approxima-
tion [34,35]. For a thin front, the local front velocity follows
the eikonal equation: ~Vf · ~n ¼ Vχ þDmκ þ ~Uð~rÞ · ~n,
where ~n is the normal of the front, κ the curvature, and
~Uð~rÞ the local flow velocity. Indeed, this equation is similar
to the “flux-line model” of Kardar [36], where the chemical
velocity plays the role of the Lorentz force, and the
disordered flow that of the random force. After projection
and neglecting higher-order terms [30], the eikonal
approximation yields

∂h
∂t ≃ Vχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∇hÞ2

q
þ Dm∇2h
1þ ð∇hÞ2 þ Ū þ δUyð~rÞ: ð4Þ

Assuming small gradients, and normalizing by Vχ, leads to
Eq. (2) where η̄≡ δUy and with the parameters
ν ¼ lχ ¼ Dm=Vχ , λ ¼ 1, and f ¼ ðŪ þ VχÞ=Vχ , whose
small renormalization due to the neglected terms can be
estimated [37]. The difference F − f ¼ f0 is related to the
space average of the KPZ term f0 ∼ ðλ=2Þhð∇hÞ2iL. Note
that λ ¼ 1 is independent of the front propagation direction,
and fixed by the initial condition of the experiment.
Negative qKPZ describes then the backward moving fronts,
i.e., ∂h=∂t < 0, since performing h → −h is equivalent to
measuring the front position along the −ŷ axis. Finally,
near the transition at Fc− , the slope of the sawtooths may
be large. Although it correctly predicts the first-order
transition, small-gradient qKPZ may not be quantitatively
accurate. A more precise scenario was proposed in
[38], based on the PNG model [26] and extreme-value
statistics.
In conclusion, chemical-wave propagation coupled

with the disordered flow in a porous medium, develop
self-affine structures, with scaling exponents consistent
with either KPZ or qKPZ classes. Remarkably, by tuning
a single parameter, this system passes through three
universality classes, providing a rich experimental setting
to study growth phenomena. Slowly backward propagating
fronts constitute beautiful experimental evidence of a
chemical interface described by negative qKPZ. Part of
this phenomenology was recently observed in magnetic
domain walls [32]: it would be interesting to reach
the thermal KPZ class there by increasing the driving.
This work opens the door for further investigations
on frozen pattern formation in out-of-equilibrium
systems [39].
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