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We study experimentally what is arguably the simplest yet nontrivial colloidal system: two-dimensional
clusters of six spherical particles bound by depletion interactions. These clusters have multiple, degenerate
ground states whose equilibrium distribution is determined by entropic factors, principally the symmetry.
We observe the equilibrium rearrangements between ground states as well as all of the low-lying excited
states. In contrast to the ground states, the excited states have soft modes and low symmetry, and their
occupation probabilities depend on the size of the configuration space reached through internal degrees of
freedom, as well as a single “sticky parameter” encapsulating the depth and curvature of the potential.
Using a geometrical model that accounts for the entropy of the soft modes and the diffusion rates along
them, we accurately reproduce the measured rearrangement rates. The success of this model, which
requires no fitting parameters or measurements of the potential, shows that the free-energy landscape of
colloidal systems and the dynamics it governs can be understood geometrically.
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Colloidal clusters containing a few particles bound
together by weak attractive interactions are among the
simplest, nontrivial systems for investigating collective
phenomena in condensed matter. Such clusters can equili-
brate on experimental time scales and display complex
dynamics, yet are small enough that the ground states can
be enumerated theoretically, and the positions and motions
of all the particles can be measured experimentally.
Theoretical and experimental work on isolated three-
dimensional (3D) colloidal clusters of monodisperse par-
ticles has shown how the number of ground states changes
with the number of particles N [1–6] and how the free
energies of the rigid states are related to entropy-reducing
symmetry effects and entropy-enhancing vibrational modes
[7–9]. The importance of entropy in colloidal clusters
stands in stark contrast to the case of atomic clusters,
where potential energy effects dominate. The entropically
favored clusters are important clues to understanding
nucleation barriers in bulk colloidal fluids [4,10] and the
local structure of gels [11].
However, the excited states and structural rearrange-

ments in such clusters have not yet been studied exper-
imentally. In bulk materials, local structural rearrangements
are important to a variety of dynamical phenomena,
including the glass transition [12], aging [13,14], epitaxial
growth [15], and the jamming transition [16]. A better
understanding of the internal dynamics in colloidal clusters
could reveal local mechanisms underpinning these bulk
phenomena. Only a few experimental studies have explored
internal dynamics in colloidal clusters: Perry and co-
workers examined transitions between two states of a

3D six-particle cluster of spherical particles [17], Yunker
and co-workers studied relations between the vibrational
mode structure and the contact network in disordered, two-
dimensional (2D) clusters of polydisperse particles as a
function of N [18,19], and Chen and co-workers examined
the interconversion and aggregation pathways in clusters of
particles with directional attractions [20]. As yet, however,
a quantitative understanding of the rearrangement rates and
the pathways through the excited states remains challeng-
ing. Transition-state models [21–24], which relate dynam-
ics to the heights of saddle points on the energy landscape,
are not easily applied to colloids because the fluid sur-
rounding the particles damps and hydrodynamically cou-
ples their motions, and the short-ranged interactions typical
of colloidal particles are not easily measured, making the
topography of the landscape difficult to accurately com-
pute. Indeed, as we shall show, the excited-state occupation
probabilities and the transition rates are sensitive to fine
details of the potential, which are not easily measured.
We study experimentally the excited states and rear-

rangement rates in perhaps the simplest type of colloidal
cluster: isostatic arrangements of equal-sized, spherical
colloidal particles, constrained to lie on a plane and held
together by well-controlled, short-range attractions a few
times the thermal energy kBT in depth [Fig. 1(a)]. Because
the clusters are isostatic, all excited states have zero-
frequency modes, or soft modes, in their vibrational spectra
(Fig. 1(b), [25]). By tracking the particles over long times,
we quantify the equilibrium probability of each excited
state and the motions of the particles within each soft mode.
Surprisingly, the dynamics that emerge from this landscape
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can be quantitatively described by a simple geometric
model involving only two parameters, a “sticky parameter”
that characterizes both the depth and curvature of the
attraction, and a diffusion coefficient, which we find to be
insensitive to the mode. Both parameters can be easily
measured. Therefore, no detailed knowledge of the inter-
actions or hydrodynamics is required to reproduce the rates
of rearrangement between ground states.
To make clusters, we first load an aqueous suspension of

1.3 μm-diameter sulfate polystyrene microspheres into a
cell made from two plasma-cleaned glass coverslips sep-
arated by 35 μm DuPont Mylar® A spacers [25]. The only
additional component in the suspension is sodium dodecyl
sulfate (SDS), a surfactant that forms negatively charged
micelles in solution. The micelles create a weak depletion
interaction [30–32] between the particles and a stronger
depletion interaction between the particles and coverslip
[33,34], as illustrated in Fig. 1(a). At 33.4 mM SDS, we
observe that 2D clusters bound to a coverslip frequently
transition between states but rarely split apart or merge

[25]. At this concentration, the sodium counterions from
the surfactant reduce the Debye length to 2.85 nm, setting
the effective hard-sphere depletion range of the micelles to
30 nm, just 2.3% of the particle diameter [32,35]. As a
result, the electrostatic and depletion interactions between
the particles are short ranged. There is likely also a short-
range van derWaals attraction, which we estimate tapers off
to kBT when the particle surfaces are 145 nm apart [36].
At the beginning of the experiment, we assemble clusters

at the top of the sample cell using optical tweezers. We then
turn off the tweezers and record digital micrographs for the
remainder of the experiment. The clusters, which would
normally sediment, remain at the underside of the upper
coverslip, confirming the depletion attraction. We use
particle tracking algorithms to locate the particles [37],
link the locations into trajectories through time, and
automatically identify the cluster configurations [25].
We focus on six-particle clusters because this is the

smallest system with multiple ground states. Because these
clusters are bound by short-range interactions, the potential
energy is proportional to the number of contacts or “bonds”
between particles. The six-particle clusters adopt three
ground states with nine bonds each [Fig. 1(c)]: the
parallelogram (which has two enantiomers), chevron,
and triangle. In aggregate, the clusters occupy the paral-
lelogram and chevron states for equal amounts of time but
spend only one third as much time in the triangle state
[Fig. 1(c)]. The measured occupation probabilities agree
with the expectation for a statistical mechanics ensemble in
equilibrium. To calculate the probabilities, we assume that
the translational, rotational, and vibrational degrees of
freedom are independent, the vibrational modes are har-
monic, and the translational contributions and potential
energy differ negligibly among the three states [25]. As
seen previously in 3D clusters, the differences in

(a)

(b)

(c)

FIG. 1 (color online). (a) SDS micelles induce a short-range
depletion attraction between polystyrene microspheres and be-
tween the microspheres and the nearby glass coverslip. (b) Time-
lapse images demonstrate a transition. (c) The three rigid ground
states and their theoretical and experimental probabilities with
95% confidence intervals [25] (the probabilities for the paral-
lelogram include both chiral enantiomers).

FIG. 2 (color online). Theoretical (bars) and experimental (points) probability distributions of the eight- and seven-bond excited states.
Each bar-point pair is labeled by a connectivity diagram of the excited state, with hingelike joints and nonrigid squares labeled in red.
Hand symbols mark the chiral states, and curved arrows mark the states with twofold rotational symmetry (in 2D the only accessible
symmetry axis is perpendicular to the plane of confinement). The total observation time is 25.6 h; for comparison, the clusters spend
19.5 h in the nine-bond states. Error bars represent 95% confidence intervals [25].

PRL 114, 228301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
5 JUNE 2015

228301-2



occupation probabilities are primarily due to symmetry,
which enters into the rotational contribution [7,10].
The excited states of the system have more complex and

interesting structures. All of them have zero-frequency
modes. The modes we see at the eight-bond energy level
have either hingelike joints or diamond-square-diamond
[38] flexibility (Fig. 2). Although the seven-bond energy
level has twice as many states, nearly all of the zero-
frequency modes are simply combinations of these two
types of motion (Fig. 2). The exceptions are a state with a
flexible ring of five spheres and a state with a single sphere
detached from the cluster. We do not include this dis-
connected state in our seven-bond probability calculations
because it is not a true six-sphere cluster.
The fraction of time the clusters spend in the excited

energy levels depends on the surfactant concentration. At a
concentration of 33.4 mM SDS, the clusters spend 95.5%
of the time in states with seven or more bonds. Of this time,
79.6% is spent in ground states, 18.0% in eight-bond
excited states, and 2.4% in seven-bond excited states. As
we decrease the surfactant concentration, the distribution
shifts toward the excited energy levels. Qualitatively, this
shift makes sense, since decreasing surfactant concentra-
tion corresponds to decreasing depletion strength. To
understand the energy level occupation probabilities quan-
titatively, we must consider the entropy of the soft modes.
We return to this point later.
Despite the wide variety of structures in the excited

states, few have any symmetry. Surprisingly, the few
symmetric states do not occur as infrequently as we might
expect, given the dominant role symmetry—more specifi-
cally, permutational entropy [7,39]—plays in the proba-
bilities of six-sphere ground states in both 2D and 3D.
Furthermore, the asymmetric states have a highly nonuni-
form distribution that is only partially explained by the
increased probability of states that are pairs of chiral
enantiomers (Fig. 2). These observations suggest that the
variation in probabilities arises from entropic factors other
than the permutational contribution.
We also measure the rate of rearrangements between

ground states and find that the matrix of rearrangements per
unit time is symmetric (Table I), as expected in equilibrium.
Most of these rearrangements involve a single bond

breaking, followed by the cluster diffusing along the soft
mode in its excited state and finally forming a new bond to
arrive at a ground state (Fig. 3).
Understanding the excited-state probabilities and rear-

rangement rates requires us to consider the entropy of the
soft modes and the dynamics along the resulting free-
energy landscape. In contrast to typical molecular-scale
transitions, in which the potential energy varies along the
entire reaction coordinate, our clusters first break out of a
narrow attractive well and then freely diffuse in soft modes
at constant potential energy under only an entropic driving
force. We therefore expect the transition rates to depend on
the entropy along the modes, the hydrodynamic drag, and
the distance to diffuse in the soft modes.
To calculate the entropy, we use the geometrical model

of Ref. [40]. In this model, the potential energy landscape is
represented as a collection of manifolds, each at constant
potential energy. The dimension of each manifold equals
the number of internal degrees of freedom of the cluster: for
example, the ground states are zero-dimensional manifolds
(points), and the eight-bond states live on one-dimensional
manifolds (lines). To compute the partition function, we
numerically parametrize each manifold and integrate the
vibrational and rotational entropies over its entire volume.

TABLE I. Structural rearrangement rates between each of the ground states: parallelogram (P), chevron (C), and
triangle (T). In total, we observed 820 transitions in 25.6 h of data from 44 clusters. Measured values used in
postfactor: D ¼ 0.065 μm2=s (234 μm2=hr), κ ¼ 30.5, and d ¼ 1.3 μm.

Theory Experiment

(nondimensional) end state (per hour) (per hour)

P C T P C T P C T

start state P 1.17 1.43 0.67 5.3 6.5 3.0 4.4 5.5 2.5
C 1.43 2.31 0.56 ×ðD=κd2Þ ¼ 6.5 10.5 2.5 5.4 7.7 1.9
T 0.67 0.56 0 3.0 2.5 0.00 2.5 2.2 0.04

FIG. 3. The eight-bond excited states form transition pathways
(gray background) between the ground states (white back-
ground). The numbers at the edges of the ground states show
the number of bonds that lead into each nearby pathway. The
measured diffusion coefficients of the modes range from 0.054 to
0.078 μm2=s [25].
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This calculation of the entropy is purely geometrical and
requires no knowledge of the actual pair potential; the only
assumption is that the harmonic vibrational degrees of
freedom equilibrate quickly compared to motion along the
soft modes.
The model reproduces our experimental measurements

of the excited-state probabilities within experimental error
(Fig. 2). The agreement validates the model’s assumption
and shows that for the excited states, the entropy associated
with the soft modes dominates the permutational entropy
associated with asymmetry. In particular, the entropy of the
zero-frequency modes explains the surprisingly high prob-
ability of seven-bond structures with twofold symmetry.
To understand the relative populations of the excited-

state energy levels (eight-bond versus seven-bond), we
must consider the interparticle potential. Measuring the
potential well is difficult because the interaction is short
ranged—only a few tens of nanometers for the depletion
component [32] and similarly ranged for the electrostatic
and van der Waals contributions. However, the short range
makes it possible to use a “sticky sphere” approximation, in
which a single parameter κ, called the sticky parameter,
characterizes the interaction. κ is the partition function for a
single bond and as such is proportional to the amount of
time two particles are bound versus separated. In the limit
where the potential becomes both infinitely narrow and
infinitely deep [40],

κ ¼ e−βU0

d
ffiffiffiffiffiffiffiffiffiffiffi

2
π βU

00
0

q ; ð1Þ

where β ¼ ð1=kBTÞ, U0 is the depth of the potential well, d
is the microsphere diameter, and U00

0 is the curvature at the
potential minimum. The advantage of this approximation is
that we need only measure κ, and not the full potential.
We measure κ from ratios of occupation probabilities

of ground and excited energy levels. The total time tn
for which a cluster has n bonds is proportional to Znκ

n,
where Zn is the sum of the partition functions of the
n-bond manifolds [25]. By taking ratios of the time
spent at different energy levels and calculating the Zn
we obtain a measurement of the sticky parameter as
κ ¼ ðtnþ1=tnÞðZn=Znþ1Þ. We use observations of smaller
clusters to determine κ independently of our six-particle
data. For three-particle clusters, with three-bond and two-
bond energy levels, we find κ ¼ 29.3. We make two more
measurements of κ using four-particle clusters: a compari-
son of five-bond to four-bond energy levels yields
κ ¼ 26.8, and that of four-bond to three-bond levels yields
κ ¼ 35.3. Using the mean of these measurements (30.5)
in the n-bond partition function Znκ

n, normalized by
P

9
n¼7 Znκ

n, where ½Z7; Z8; Z9� ¼ ½11900; 3320; 498�, we
predict six-particle occupation probabilities of p7 ¼
2.1� 0.6%, p8 ¼ 17.6� 2.0%, and p9 ¼ 80.3� 2.5%,
where the uncertainties are based on the range of measured

κ values. The calculations agree with our measured
occupation probabilities.
The transition rates are calculated using transition path

theory [40,41]. To simplify the calculations we suppose that
each transition occurs by a single bond breaking, followed
by the cluster diffusing along a one-dimensional path and
forming another bond. We calculate the flux of probability
along each path and from this extract the nondimensional
rates, exactly as in Ref. [40]. The dimensional rates are
obtained by multiplying by D=κd2, where D is the average
diffusion coefficient and d is the microsphere diameter
(Table I). As our implementation of the model ignores the
time the clusters spend with fewer than eight bonds, we
expect it to slightly overestimate the rates.
To determine the second parameter in our model, D, we

measure the mean-square displacements along each path-
way [25]. The measured diffusion coefficients range from
0.054 to 0.078 μm2=s with a mean of 0.065 μm2=s (Fig. 3).
The error bars on the measured diffusion coefficients [25]
are smaller than the variation in these values between the
different modes. Thus, the variation is likely due to
differences in hydrodynamic friction factors between these
modes, and not measurement error.
Nonetheless, the dimensional transition rates predicted

from a simple model using a single, average diffusion
coefficient agree with the measured rates, as shown in
Table I. Using different diffusion coefficients for each
pathway yields values that agree equally well, though not
better, with the data. This shows that the variation in
diffusion coefficients among the different modes is not
significant compared to the error in the measured transition
rates. However, it also raises the question of why the
diffusion coefficients for different pathways vary by only
about 20% from the mean value. To understand this
variation, we measure the diffusion coefficient for a
rearrangement in a three-sphere cluster and find a value
ofD ¼ 0.070 μm2=s, close to the average value for the six-
sphere rearrangement pathways. This agreement, along
with the fact that these diffusion coefficients are all lower
than that for a single sphere diffusing on the plane
(D ¼ 0.10 μm2=s), suggests that the hydrodynamic friction
factor along each pathway is dominated by flows between
those spheres that must slide or roll past one another (as in
the three-sphere cluster), rather than by hydrodynamic
interactions between larger moving subunits of the clusters.
This would explain why the diffusion coefficients are
similar for both diamond-square-diamond and hinge-
like modes.
Taken together, these results shed new light on the free-

energy landscape, and the dynamics along it, in colloidal
systems. As in 3D clusters, the short-range interaction in
our 2D system leads to degeneracy in both the ground and
excited states. Whereas the occupation probabilities of the
ground states are determined primarily by symmetry
(permutational entropy), those of the excited states are
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determined primarily by the entropy of the soft modes. The
agreement between the measured probabilities of the
excited states and those predicted from our geometrical
model shows that the harmonic vibrational modes equili-
brate quickly compared to motion along the soft modes.
This separation of time scales is another consequence of the
short-range interactions. From our geometrical model of the
free energies, we can reproduce the measured rearrange-
ment rates between ground states by incorporating only a
single diffusion coefficient and the partition function of a
single bond, both of which are easily measured.
Our model easily extends to 3D clusters. Its success in

describing the 2D experimental data suggests that, at least
near the isostatic limit, it may be possible to use similar
geometrically inspired models to understand the free-
energy landscape and predict dynamics in more complex
systems with soft modes, such as bulk colloidal phases.
Indeed, such models are beginning to be developed [42].
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