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Coordinated motion of cell monolayers during epithelial wound healing and tissue morphogenesis
involves mechanical stress generation. Here we propose a model for the dynamics of epithelial expansion
that couples mechanical deformations in the tissue to contractile activity and polarization in the cells. A
new ingredient of our model is a feedback between local strain, polarization, and contractility that naturally
yields a mechanism for viscoelasticity and effective inertia in the cell monolayer. Using a combination of
analytical and numerical techniques, we demonstrate that our model quantitatively reproduces many
experimental findings [Nat. Phys. 8, 628 (2012)], including the buildup of intercellular stresses, and the
existence of traveling mechanical waves guiding the oscillatory monolayer expansion.
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Many developmental processes, such as embryogenesis
[1], tissue morphogenesis [2], wound healing [3], and
cancer metastasis [4], involve collective cell migration
[5] and long-scale force generation, which in turn rely
on the interplay of cell-cell cohesion, cell adhesion to the
extracellular matrix, as well as myosin based contractility
[6,7]. Recent experiments reveal that unconstrained tissue
expansion is accompanied by propagating mechanical
waves and buildup of intercellular stresses [8]. These
waves are controlled by expressions of myosin activity,
cell-cell adhesion, and cytoskeletal remodeling. These
findings pose a fundamental physical question: how do
waves arise in overdamped active elastic media? What are
the underlying spatiotemporal patterns governing stress
propagation in dense expanding cell layers?
Active materials encompass a wide range of living and

nonliving systems with inborn mechanical stresses regu-
lated by chemical reactions. Generic descriptions of the
dynamics of such materials predict a broad class of non-
equilibrium states including spontaneous flow, wave propa-
gation, and pattern formation [9–12]. While the dynamics
of active fluids have been extensively studied, quantitative
descriptions of active contractile materials are much less
developed. Recent work has suggested that a polarized
elastic medium driven by chemical agents can exhibit
fingerlike protrusions and internal stress accumulation
during expansion [13,14]. It remains unclear, however,
how cell contractility, polarization, or tissue cohesion
influence stress generation and wave propagation. Earlier
work by two of us and others showed that the coupling of
mechanical and chemical degrees of freedom can lead to
an effective inertia and sustained propagation of waves
[15–17]. Related models also emphasize that turnovers in
actomyosin activity are essential to capture spontaneous
oscillations in cell cytoskeleton [18,19]. In this Letter,

we propose a new mechanism of stress propagation in
multicellular materials based on a local feedback between
elastic deformations and cell contractility.
We consider a minimal model for an expanding cell

monolayer, described as an elastic continuum coupled to an
internal degree of freedom, the concentration of active
contractile units. The assumption of elasticity is supported
by experimental evidence that in cohesive cell layers stress
and strain tend to be in phase, as in elastic materials [7,8].
The contractile units represent actomyosin assemblies that
locally generate contractile stresses in the cells. We propose
that tissue expansion promotes the rate of assembly of these
contractile units, leading to larger contractile forces that can
compete with propulsion forces. This mechanochemical
feedback successfully captures the experimentally
observed stress waves [8]. The steady state of such a
system is described by polarization being largest at the
edges and lowest at the center. A scaling model for the
expanding cell layer captures the mechanical oscillations
and predicts self-sustained periods of stiffening and fluid-
ization in the tissue.
Continuum model for the spreading cell layer.—We

consider a thin film of cell monolayer spreading in the x-y
plane, with height hðtÞ and length LðtÞ at time t [Fig. 1(a),
inset]. In the absence of external forces, in-plane force-
balance gives ∂jΣij þ ∂zΣiz ¼ 0, where Σ is the stress
tensor and the latin indices denote in-plane coordinates x; y.
For h ≪ L; d, the x and y linear extensions of the cell layer,
we average the force-balance equation across the z direc-
tion to obtain h∂jσij ¼ Σizjz¼0, where σðx; yÞ ¼
1
h

R
h
0 dzΣðx; y; zÞ, assuming that the top layer (z ¼ h) is

stress free. The shear stress at the cell-substrate interface is
the traction stress exerted by the cell on the substrate. It
is given by Σizjz¼0 ¼ Ti ¼ Γ∂tui − f0pi, with Γ the friction
density, u the elastic displacement field, p the cell
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polarization, and f0 the propulsion force per unit cross-
sectional area. The term f0pi is supported by the exper-
imental observation that the local velocity of expanding
monolayers is generally not aligned with traction, requiring
the existence of an internally generated driving force
associated with cell motility [20]. Both Γ and f0 are
controlled by integrin-mediated cell-environment inter-
actions. We further simplify the model by assuming
translational invariance along the y direction. The equation
of motion governing the displacement field, uðx; tÞ, of the
cell layer is (0 < jxj < L=2),

Γ∂tu ¼ f0pðx; tÞ þ hðtÞ∂xσ; ð1Þ

where σðx; tÞ is the internal stress in the monolayer,
σ ¼ −Πþ Bεþ σaðcÞ. It is given by the sum of an internal
pressure (Π), an elastic stress, with B the compressional
elastic modulus and ε ¼ ∂xu the strain field, and an active
stress σa that depends on the concentration c of active
contractile units, such as phosphorylated myosins interact-
ing with actin filaments. The constant pressure Π accounts
for internal growth due to cell proliferation which is
assumed negligible without loss of generality. The active
stress is proportional to the chemical potential of the active
species μ, which we take proportional to the logarithm of

the concentration of the species. We thus have
σaðcÞ ¼ β log ðc=c0Þ, where c0 is the concentration of
contractile elements in equilibrium (f0 ¼ 0) and β > 0
the magnitude of the contractile stress. The dynamics of the
concentration field cðx; tÞ is given by

∂tc ¼ −
1

τ
ðc − c0Þ þ αε − ∂xJ; ð2Þ

where τ is the time scale of turnover of the contractile
elements, α > 0 is the rate of production of c due to local
extension (or degradation due to contraction), and Jðx; tÞ is
the current responsible for transport of these active units.
This is in contrast to our earlier works [15,16], where the
strain field enters the dynamics of c through the decay rate.
The total current is a sum of diffusive and convective
fluxes, J ¼ −D∂xcþ c∂tu, where D is an effective dif-
fusion constant, describing the tendency of neighboring
cells to equalize activity levels. Together, Eqs. (1) and (2)
define the dynamics of the spreading monolayer, given the
form of pðx; tÞ, the boundary and initial conditions. We
first consider the case of constant but nonuniform propul-
sion force given by pðx; tÞ ¼ tanh ðx=λÞ, where λ is a length
scale controlling the width of the transition zone from left-
moving to right-moving cells at the center of the monolayer
[see Fig. 1(a)]. The length of the spreading layer at time t is
given by, LðtÞ ¼ L0 þ uðL0=2; tÞ − uð−L0=2; tÞ, and the
height is determined by the condition of volume conserva-
tion, hðtÞ ¼ h0L0=LðtÞ, with L0 and h0 the initial length
and height of the monolayer, respectively. The boundary of
the monolayer is stress free, i.e., σð�L=2; tÞ ¼ 0 at all
times. We assume that the monolayer is initially unde-
formed, uðx; 0Þ ¼ 0, with an equilibrium concentration of
contractile elements, cðx; 0Þ ¼ c0, and choose a no-flux
boundary condition for c, ∂xcð�L=2; tÞ ¼ 0.
Propagating waves.—In the absence of propulsion force

(f0 ¼ 0), the cell layer is in a quiescent homogeneous state,
with u ¼ 0 and c ¼ c0. When f0 ≠ 0, the cell layer spreads
and reaches a steady state at long times. We have integrated
numerically Eqs. (1), (2) with the given initial and
boundary conditions, using the Runge-Kutta-Fehlberg
method. The model parameters are chosen to quantitatively
describe the available experimental data for MDCK colo-
nies [8,21]. The phase diagram shown in Fig. 2(a) displays
three dynamical regimes in terms of contractile activity β
and compressional modulus B (controlled by cell-cell
adhesion): a region where fluctuations are stable and
diffusive at low contractility, an intermediate region where
the system supports propagating waves, and a region where
the propagating waves become unstable at high contrac-
tility. There is good agreement between the boundaries
obtained via numerical solution of the full nonlinear
equations (red squares) and those determined by the linear
instability of fluctuations about the equilibrium, unde-
formed state [21] and about the long-time solution of
the mean-field model in Eqs. (4). In the region of

(a)

(c) (d)

(b)

FIG. 1 (color online). (a) Top: Schematic of a spreading
cell monolayer. Traction stresses (T) are indicated by arrows
and the color map denotes local magnitude of monolayer
stress. Bottom: Profile of cell polarization. (b) Time evolution
of the internal stress σðx; tÞ in the monolayer. (c) Time evolution
of the concentration of contractile units, c, normalized by its
equilibrium value. (d) Midline stress σð0; tÞ=σ∞ð0; tÞ (blue
solid line), midline strain εð0; tÞ=ε∞ð0; tÞ (blue dashed
line), and midline strain rate _εð0; tÞ (red solid line, units on right
axis 10−4 s−1) as functions of time. Parameters: B ¼ 120 Pa,
β ¼ 200 Pa, Π=β ¼ 10−3, τ ¼ 350 min, α=c0 ¼ 1=560 min−1,
L0 ¼ 600 μm, h0 ¼ 6 μm, f0 ¼ 4 Pa, λ ¼ 30 μm, Γ ¼
0.009 nN min =μm3, D ¼ 26 μm2=min.
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propagating waves, the stress initially shows a few local
maxima [Fig. 1(b)], which evolve towards a single maxi-
mum at the center of the monolayer, as observed in
experiments [8,22]. The concentration of contractile ele-
ments also oscillates and builds up at the center of the
monolayer [Fig. 1(c)]. The stress waves propagate nearly in
phase with the strain field, whereas the strain rate fluctuates
nearly out of phase with the stress [Fig. 1(d)]. Thus, the
response of the material is dominated by elastic relaxation
with dissipation induced by turnovers in contractility on a
time scale τ. The waves span the entire length of the
monolayer and consist of a strain rate wave front that
propagates inwards from the edge, and then travels back to
the edge, resembling an X pattern, as observed experi-
mentally [8]. With the given parameter values our numeri-
cal simulations capture the mechanical waves as evident in
the kymographs of stress, strain rate, and concentration of
contractile units [Figs. 2(b)–(d)].
To understand the origin of wave propagation and

estimate the wave frequency, it is useful to examine the
linear fluctuations in the strain field δε and the concen-
tration field δc, about the quiescent homogeneous state
u ¼ 0, c ¼ c0, and no spreading force. Using Eqs. (1) and
(2), one can then eliminate δc from such linearized
equations to obtain the linearized dynamics of strain
fluctuations,

τΓ∂2
t δεþ Γ∂tδε ¼ h0ðBeff þ ηeff∂t − τBD∂2

xÞ∂2
xδε; ð3Þ

The above equation shows that the coupling of strain to
concentration field yields an effective mass density (iner-
tia), τΓ, and viscoelasticity characterized by an effective
elastic modulus, Beff ¼ Bþ αβτ=c0, and an effective
viscosity ηeff ¼ ðB − β þDΓ=h0Þτ. The dynamics of
strain fluctuations resembles a damped Kelvin-Voigt oscil-
lator with a characteristic frequency of oscillations,
ω0 ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0ðBeff þ τq2BDÞ=ðτΓÞ

p
, with q the wave vector.

The estimate for the time period 2π=ω0 agrees well with the
time period determined from numerics for q≃ 4π=L0 [see
Fig. 3(a)] and with the value measured in recent experi-
ments [8]. Finally, we note that if the concentration c is
conserved (τ → ∞; α ¼ 0), stable propagating waves
are spontaneously generated for 0 < B − β þDΓ=
h0 < 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DBΓ=h0

p
. If diffusion is slow compared to elastic

relaxation, DΓ=Bh0 ≪ 1, stable propagating waves are not
observed [21]. In the opposite limit of infinitely fast
turnovers in contractility (τ → 0), strain fluctuations decay
diffusively at a rate ≃Bh0=ΓL2.
Mean field model.—The mean field limit of the con-

tinuummodel is obtained by neglecting spatial variations in
c and ε and it is formulated in terms of the length (L),
height (h), and the average concentration of contractile
elements, c̄ðtÞ ¼ ð1=LÞ R L

0 dxcðx; tÞ, with

γ
dL
dt

¼ F0 − AðtÞσðtÞ; ð4aÞ

dc̄
dt

þ c̄
L
dL
dt

¼ −
1

τ
ðc̄ − c0Þ þ αε; ð4bÞ

with F0 the propulsion force, γ the friction, AðtÞ ¼ dhðtÞ
the cross-sectional area, εðtÞ ¼ LðtÞ=L0 − 1 the strain, and
σðtÞ the internal stress given by σðtÞ ¼ BεðtÞ þ β½c̄ðtÞ=
c0 − 1�. The height is determined using the incompress-
ibility condition, with the size in the y direction, d, fixed.
The steady state solution is L∞ ¼ L0=ð1 − ΛÞ, h∞ ¼
h0ð1 − ΛÞ and c∞ ¼ c0 þ ατΛ=ð1 − ΛÞ, with Λ ¼
c0F0=dh0ðBc0 þ αβτÞ the net compressive strain in the z
direction. For a given value of elastic modulus B, the mean-
field model predicts oscillatory solutions for β > βc, where
βcðBÞ defines the phase boundary in (B; β) plane separating
the regions of propagating waves and diffusive spreading
[dashed line in Fig. 2(a)]. For β < βc the monolayer
diffusively approaches the steady state (c∞; L∞). This
simple mean-field approach allows us to study the material
response of the monolayer characterized by an effective
elastic modulus, BMF ¼ dσ=dε. The oscillatory regime
(β > βc) exhibits sustained oscillations in the material
rigidity, BMF, with a slow period of stiffening followed
by a sharp turnover [see Fig. 3(b)]. For β < βc, the material
gradually stiffens with BMF asymptotically approaching the
value Beff . These oscillations reflect self-sustained turn-
overs in the cytoskeleton with periodic reinforcement and
fluidization on different time scales, which was invoked to

FIG. 2 (color online). (a) Phase diagram of the spreading gel.
The vertical axis represents the contractile activity β and the
horizontal axis is the compressional modulus B. Three behaviors
are observed: stable diffusive, stable propagating waves, and
oscillatory instability. The red squares are obtained from the
numerical solutions of the full nonlinear model, the black solid
lines are the results of the linear stability analysis (LSA) of the
equilibrium state (at q ¼ 13.5=L0) [21], and the dashed green
lines refer to the LSA of the mean-field model given in Eqs. (4).
Kymographs of (b) the monolayer stress field, (c) strain rate
∂tεðx; tÞ, and (d) cðx; tÞ=c0. The parameter values are taken to be
the same as in Fig. 1.
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be the underlying mechanism of wave propagation
in Ref. [8].
Time-dependent propulsion forces.—Finally, we con-

sider time variations of the propulsion force, as arising
from the dynamics of cell polarization pðx; tÞ given by

∂tp ¼ ða − bp2Þpþ κ∂2
xp − w∂xεþ w0∂xðc=c0Þ; ð5Þ

where the first two terms with b > 0 allow for the onset of a
homogeneous polarized state when a > 0. The stiffness
constant κ characterizes the cost of local deformations in
the polarization. The last two terms in Eq. (5) define active
couplings of p to the strain and the concentration field, with
w;w0 > 0, such that p aligns with the gradient of mono-
layer density and the concentration field. In other words,
cell polarization is enhanced in the direction opposite to
that of elastic restoring forces. Additionally, polarization
gradients can induce mechanical stresses, and the stress
tensor is modified to read σ ¼ Bεþ σaðcÞ þ β0∂xp, where
β0 > 0 is a contractile tension induced by polarization
gradients. We assume a no-flux boundary condition
p0ð�L=2Þ ¼ 0. For w ¼ w0 ¼ 0 and if t ≫ a−1, such that
L ≫

ffiffiffiffiffiffiffiffi
κ=a

p
, the solution is essentially time independent,

and can be approximated as p∞ðxÞ≃
ffiffiffiffiffiffiffiffiffiffiffiffiða=bÞp

tanh ðx=λÞ,
with λ ¼ ffiffiffiffiffiffiffiffi

κ=a
p

.
When the coupling of polarization to strain and con-

tractility is turned on, various spatiotemporal patterns
emerge as the active tension β0 is varied. For small β0,
the stress patterns are qualitatively similar to Fig. 2(b) (with
time-independent propulsion), and p asymptotically
approaches p∞ with initial oscillations near the midline
[Figs. 4(a), 4(d)]. For intermediate β0, a traveling stress
pulse emerges in the layer and the location of stress maxima
oscillate around the midline [Fig. 4(b)]. This is

accompanied by large amplitude oscillations of net polarity
that attenuate in time to generate a symmetric steady state
polarization profile [Fig. 4(e)]. These traveling pulses
persist even in the case β ¼ 0. For even higher values of
β0, complex oscillatory patterns emerge in the monolayer
stress and polarization [Figs. 4(c), 4(f)].
Discussions.—We have developed a simple yet rich

dynamic model for an active spreading gel, based on a
feedback between local strain and contractility. A local
increase in length due to spreading promotes the assembly
of active elements that in turn induce contraction. We
propose that a finite turnover rate in the active contractile
elements can yield an effective inertia and viscoelasticity in
the gel that vanishes for infinitely fast turnover rates. This
simple mechanochemical model allows us to capture the
experimentally observed propagating stress waves during
tissue expansion without invoking nonlinear elasticity [14].
These stress waves are characterized by strain rate wave
fronts that initiate from the leading edge and periodically
travel into and away from the midline of the monolayer.
Our findings also elucidate that the effective material
rigidity of the tissue undergoes sustained periods of
stiffening and softening as the waves propagate. We
emphasize that spreading is not crucial for wave propaga-
tion and that oscillations can also occur under confinement.
In contrast to our model, Ref. [23] recently proposed that
oscillatory modes in confined layers can also be generated
by stochastic motion of cells. Experimental tests that inhibit
myosin based contractility or cell directionality can help
discriminate between these different models.
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FIG. 3 (color online). (a) Period of oscillation determined
from the numerical solution to Eqs. (1) and (2) (red
squares), obtained from Eq. (3) (black solid circles), and as
predicted by the mean-field model (green open circles)
for various β and B. (b) Mean-field elastic modulus BMF of the
cell monolayer as a function of time, showing
oscillatory stiffening or fluidization for β ¼ 100 Pa (solid) and
steady stiffening for β ¼ 30 Pa (dashed). Parameters:
B ¼ 60 Pa, τ ¼ 350 min, c0=α ¼ 780 min, F0 ¼ 8 nN,
γ ¼ 9 nN min =μm, dh0=L2

0 ¼ 0.1.

FIG. 4 (color online). Spatiotemporal evolution of internal
stress (a)–(c) and polarization (d)–(f) as the polarization induced
tension β0 is increased (left to right). (a),(d) X waves,
β0 ¼ 12 nN=μm; (b),(e) traveling stress pulse, β0 ¼ 17 nN=μm;
(c),(f) complex oscillatory patterns, β0 ¼ 24 nN=μm. Parameters:
w ¼ 4.3 μm=min, w0 ¼ 0.21 μm=min, κ ¼ 193 μm2=min,
a ¼ 0.07 min−1, b ¼ 0.03 min−1. Other parameter values are
the same as in Fig. 1. See Supplemental Material [21] for
kymographs of strain rate, velocity and traction stress.
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