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We show that the critical current of the Josephson junction consisting of superconducting electrodes
coupled through a nanowire with two conductive channels can reveal the multiperiodic magnetic
oscillations. The multiperiodicity originates from the quantum mechanical interference between the
channels affected by both the strong spin-orbit coupling and the Zeeman interaction. This minimal two-
channel model is shown to explain the complicated interference phenomena observed recently in Josephson
transport through Bi nanowires.
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The systems with a few conductive channels provide a
unique possibility for constructing nanoelectronic devices
with tunable transport properties at the quantum length
scale. One of the promising realizations of these devices is
based on the localized electronic states appearing, for
example, at the surface of topological insulators [1], at
the edges of graphene nanoribbons [2], and in InAs, InSb,
and Bi nanowires [3–6]. The physics of the charge transport
through these states appears to be extremely rich due to
strong spin-orbit coupling, large anisotropic g-factors, etc.
The unique normal state properties naturally also cause
unusual proximity phenomena revealing themselves for the
edge states coupled to the bulk superconducting leads [1,3].
Such a coupling provides a possibility for constructing new
types of Josephson devices where an external magnetic
field H can effectively control the current-phase relation
[7,8] and provide favorable conditions for the appearance
of Majorana fermions [9–11].
In this Letter we provide a theoretical description of the

magnetotransport phenomena in a Josephson system con-
taining a few conductive channels which model the edge
states localized, e.g., at the surface of a single nanowire (see
Fig. 1). Specifically, we propose a generic model account-
ing for only two interfering electron paths or conductive
channels and strong spin-orbit and Zeeman interactions.
This model allows us to describe both orbital and spin
mechanisms of the magnetic field effect and to uncover the
microscopical mechanisms responsible for the formation of
the nontrivial ground state of the Josephson junction with a
nonzero superconducting phase difference. The Zeeman
interaction produces the spatial oscillation of the Cooper
pair wave function at the scale ℏvF=gμBH (similar to the
ones in superconductor-ferromagnet structures [7]) which
results in the magnetic oscillations of the critical current with
the period ℏvF=gμBL, where L is the channel length. The
orbital effect causes a standard phase gain ∼2πHS=Φ0

(Φ0 ¼ πℏc=jej is the flux quantum) in the electronic wave

function similar to the one appearing in the Aharonov-Bohm
(AB) effect. Here S is the area enclosed by the pair of
interfering paths projected on the plane perpendicular to the
magnetic field. The interfering quantum mechanical ampli-
tudes in this case cause the magnetic oscillations in the total
transmission amplitude with the period 2Φ0=S. The Andreev
reflection at the superconducting boundaries can double the
effective charge in the oscillation period [12], and we show
that, in the general case, the resulting critical current
oscillates with the competing periods 2Φ0=S and Φ0=S.
The above physical picture should, of course, be modi-

fied in the presence of the spin-orbit coupling which can
produce the spontaneous Josephson phase difference φ0

[8]. Despite the fact that this anomalous Josephson effect
was found within several different theoretical models
[13–19], its microscopical origin still remains disputable.
We clarify this question and show that the key ingredient
for the φ0-junction formation is the nonparabolicity of the
electron energy spectrum, which in the presence of spin-
orbit coupling gives rise to the dependence of the Fermi
velocity on momentum direction. Under the influence of
the Zeeman field, such specific dependence results in the
spontaneous Josephson ground state phase φ0 and in the
renormalization of the above magnetic oscillation periods.
Turning to the existing experimental data, we must note

that the multiperiodic magnetic oscillations have recently
been observed in measurements of the Josephson critical

FIG. 1 (color online). A model Josephson junction with a
two-channel nanowire in an external magnetic field.
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current through the Bi nanowires [20]. Such wires are
known to reveal the unusual combination of properties
mentioned above: (i) strong Rashba spin-orbit coupling
with the energy comparable to the Fermi energy [21,22],
(ii) large g-factor ∼102 for certain directions of the
magnetic field [23], (iii) large Fermi wavelength λF ∼
50 nm [24], which makes it easy to create nearly one-
dimensional wires. As we show below, our model can
provide a simple fit of the oscillatory behavior discovered
in Ref. [20], being, thus, a promising candidate for the
description of the interference physics in such systems.
Our calculation of the critical current of the two-channel

nanowire is based on the Bogoliubov–de Gennes (BdG)
approach, and the setup is shown in Fig. 1. The current-
phase relation of the Josephson junction is defined by the
dependence of the quasiparticle excitation energies ε on the
Josephson phase φ (we put ℏ ¼ 1) [25]:

IðφÞ ¼ −2e
X

ε∈ð0;∞Þ

∂ε
∂φ tanh

�
ε

2T

�
; ð1Þ

where ε should be found from the BdG equations

�
Ĥ Δ̂
Δ̂† −Ĥ†

��
u

v

�
¼ ε

�
u

v

�
: ð2Þ

The electron- and holelike parts of the quasiparticle
wave function u and v are multicomponent: u ¼
ðu1↑; u2↑; u1↓; u2↓Þ and v ¼ ðv1↑; v2↑; v1↓; v2↓Þ, where
the first indices enumerate the conductive channels and
arrows indicate the z-axis spin projections. In Eq. (2) Δ̂ is
the superconducting proximity induced gap and Ĥ is the
single-electron (4 × 4)-matrix Hamiltonian of the isolated
wire, which for zero magnetic field takes the form

Ĥ ¼ ½ξðp̂Þ − μþ αp̂σ̂z� ⊗ Î þ V̂ðxÞ: ð3Þ
Here p̂ ¼ −i∂x is the momentum along the x axis, ξðpÞ is
the electron energy in the isolated wire, μ is the chemical
potential, the term αp̂σ̂z describes the Rashba spin-orbit
coupling due to the broken inversion symmetry in the y
direction [26], Î is a 2 × 2 unit matrix in the channel sub-
space, and the potential V̂ðxÞ describes the scattering at the
S-nanowire interfaces. Applying the magnetic field we
should include the Zeeman term gμBHσ̂z into Eq. (3) and
replace p̂ with ðp̂þ jejAx=cÞ, where AxðyÞ ¼ −Hy. We
intentionally choose the direction of the magnetic field
which assumes the absence of the mixing of spin bands and
the resulting Majorana states [27–29] to focus on the study
of interference effects relevant to the experiment [20].
Our strategy is to find the quasiclassical solutions of

Eq. (2) inside the nanowire where both Δ̂ and V̂ are zero
and to match the solutions at the ends of the wire using
phenomenological scattering matrices. As a first step we
derive the quasiclassical version of Eq. (2) inside the wire.
Taking, e.g., the functions u1↑ and u2↑, one can separate the

fast oscillating exponential factor: un↑ ¼ ~u�n↑e
�ip�

F x, where
the Fermi momenta pþ

F and p−
F for p > 0 and p < 0 are

different in the presence of the spin-orbit coupling. Then,
from the BdG equation (2) with Δ̂ ¼ 0, V̂ ¼ 0, and H ¼ 0,
we find

½ξðp�
F Þ − μ� αp�

F � ~u�n↑∓i½ξ0ðp�
F Þ � α�∂x ~u�n↑ ¼ ε ~u�n↑; ð4Þ

where ξ0ðpÞ≡ ∂ξ=∂p. The Fermi momenta are defined by
the equations ξðp�

F Þ ¼ μ∓αp�
F . Assuming α to be small,

we find p�
F ≈ ½1∓α=ξ0ðp0

FÞ�p0
F, with ξðp0

FÞ ¼ μ, and obtain

∓iv�F∂x ~u�n↑ ¼ ε ~u�n↑: ð5Þ
The derivation of equations for u�n↓, v

�
n↑, and v�n↓ [30]

is straightforward. Using the expansion ξ0ðp�
F Þ ¼

ξ0ðp0
FÞ∓αp0

Fξ
00ðp0

FÞ=ξ0ðp0
FÞ, we find the Fermi velocities:

v�F ¼ ξ0ðp0
FÞ � α½1 − p0

Fξ
00ðp0

FÞ=ξ0ðp0
FÞ�: ð6Þ

Clearly the spin-orbit coupling results in the difference
between the Fermi velocities vþF and v−F of quasiparticles
with opposite momenta. This renormalization (6) is absent
only for the exactly quadratic spectrum. It is the difference
between vþF and v−F which is responsible for the so-called
φ0-junction formation (see Ref. [8] and the discussion
below). Thus, the above derivation explains the results of
Ref. [31], where no φ0-junction was found for the ξðpÞ ∝
p2 spectrum, and the subsequent misinterpretation for the
conditions of the φ0-junction emergence in Ref. [32]. Note
that another possibility to get the φ0-junction even for the
quadratic electron spectrum is to consider nonballistic two-
dimensional quasiparticle motion [19].
Introducing the four-component envelope wave func-

tions w�
σ ðxÞ ¼ ð

ffiffiffiffiffiffi
v�F

p
~u�1σ;

ffiffiffiffiffiffi
v�F

p
~u�2σ;

ffiffiffiffiffiffi
v∓F

p
~v∓1−σ;

ffiffiffiffiffiffi
v∓F

p
~v∓2−σÞ

and neglecting the spin flip at the wire ends, we can write
the matching conditions, e.g., for w�

↑ : w�
↑ ð�L=2Þ ¼

T̂�w�
↑ ð∓L=2Þ and w∓

↑ ð�L=2Þ ¼ Q̂�w�
↑ ð�L=2Þ, where

L is the wire length, the unitary matrices T̂� and Q̂�

describe the quasiparticle transmission along the wire, and
there is both normal and Andreev scattering at the wire
ends. The solvability condition det ½Q̂−T̂−Q̂þT̂þ − 1̂� ¼ 0
[25,33] for the above matching equations defines the
quasiparticle energy spectrum ε. Replacing α and g by
−α and −g, one finds ε for the opposite spin component.
The general form of the matrices T̂� and Q̂� is

T̂�¼
�
eip

�
FLM̂� 0̂

0̂ e−ip
∓
F LM̂∓

�
; Q̂�¼

�
R̂�
e Â∓

h

Â�
e R̂∓

h

�
: ð7Þ

The 2 × 2 matrices M̂� are defined from the solution of
Eq. (5) under the assumption of different g-factors g1 and g2
in different channels: M̂�

nl ¼ exp ½iq�L∓ð−1Þniπϕ=2�δnl,
where ϕ ¼ HLD=Φ0 is the dimensionless magnetic flux
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(the channels pass along the plane y ¼ �D=2),
q� ¼ ðε − gnμBHÞ=v�F , and δnl is the Kronecker delta.
The phenomenological 2 × 2 matrices R̂�

eðhÞ and Â�
eðhÞ

describe the normal and Andreev reflection from the S
leads, respectively [34].
First, we consider the limit when the quasiparticles

experience full Andreev reflection in each channel sepa-
rately. We assume that such an Andreev reflection is caused
by the superconducting gap Δn induced in the n-th channel
due to the proximity effect on the S leads. In the case when
the S leads cover the ending parts of the nanowire, the
asymmetry in the relative position between the channels
and the superconductor can result in Δ1 ≠ Δ2. The specific
values for Δn strongly depend on the microscopical
properties of S-nanowire interfaces and hereafter we con-
sider Δn to be the phenomenological parameters [35–39].
The above assumption of the full Andreev reflection means
that the size ds of the induced gap regions (see Fig. 1) well
exceeds the relevant coherence length. In this limiting
case, the normal scattering vanishes (R̂�

e ¼ R̂�
h ¼ 0̂) while

the Andreev scattering is described by the matrices
ðÂ�

e Þnl ¼ δnl exp ½∓iφ=2 − i arccosðε=ΔnÞ�. Note that for
high tunneling rates between the S leads and the conductive
channels, the quasiparticles reveal Andreev reflection
inside the bulk S leads. In our model this situation
corresponds toΔ1 ¼ Δ2 ¼ Δs (Δs is the gap in the S leads).
In the short junction limit (εL=v�F ≪ 1), only the subgap

Andreev states contribute to the Josephson current. Taking
into account all of the spin projections, we obtain four
positive subgap energy levels:

ε ¼ Δnj cos ½φ=2 − ð−1Þnπϕ=2� gnμBHL=v�F �j; ð8Þ
where n enumerates the channels. For large temperatures
T ≫ Δn the current-phase relation (1) takes the form

I ¼
X
n¼1;2

In sin ½φþ βnH þ ð−1Þnπϕ� cos ðγnHÞ: ð9Þ

Here In ¼ jejΔ2
n=4T is the critical current of the nth

channel at H ¼ 0, the flux ϕ produces the oscillations of
Ic similar to the ones in the superconducting quantum
interference device (SQUID), and the cosine term depend-
ing on the constants γn ¼ gnμBLð1=vþF þ 1=v−FÞ describes
the oscillatory behavior of Ic due to the Zeeman interaction
similar to the one in superconductor-ferromagnet-super-
conductor structures [7]. The term βnH¼gnμBLHð1=vþF−
1=v−FÞ describes the φ0-junction formation due to the spin-
orbit coupling [8]. The critical current corresponding to
Eq. (9) reads

I2c ¼ I21cos
2ðγ1HÞ þ I22cos

2ðγ2HÞ
þ 2I1I2 cos ðγ1HÞ cos ðγ2HÞ cos ½2πϕþ ðβ1 − β2ÞH�:

ð10Þ
Interestingly, if g1 ≠ g2 the spin-orbit coupling influences
the period of the SQUID-like orbital oscillations in IcðHÞ,

i.e., renormalizes the effective quantization area enclosed
by the channels, Seff ¼ LDþ Φ0ðβ1 − β2Þ=2π. Choosing
the parameters relevant to the experimental situation in
Ref. [20], we obtain a variety of IcðHÞ dependencies shown
in Fig. 2. These dependencies reproduce not only multi-
periodic oscillations due to the interplay of the orbital
and Zeeman interactions observed in Ref. [20], but also
asymmetry in the form of the upper and lower envelopes. In
Figs. 2(a) and 2(b), one can clearly see two periods of oscil-
lations: δHorb ¼ Φ0=Seff and δHZeem¼2π=γ1¼2π=γ2. The
slow drift of the average current in Fig. 2(d) should be
considered, in fact, as a fragment of the large-period
oscillations caused by the difference between γ1 and γ2.
Note that the period δHorb should be sensitive to the tilt of
magnetic field in the yz plane, which allows us to
distinguish it experimentally from the period δHZeem.
Now let us study the crossover between the limits of

large and small Andreev reflection which occurs with the
decrease in the induced gap value. For simplicity we
neglect the spin-orbit and Zeeman interactions as well as
the difference between the induced gaps (Δ1 ¼ Δ2 ≡ Δ0).
We assume the interchannel electron transfer to be the only
normal scattering mechanism at the wire ends (in the
opposite limit of the vanishing interchannel transfer, the
current-phase relation should be similar to the one for a
quantum box studied in Ref. [40]). Thus, we take
ðR̂�

e;hÞnl ¼ tð1 − δnlÞ and ðÂ�
e;hÞnl ¼ aδnle∓iφ=2, where

a ¼ −iΔ0 sinhðqdsÞ=Z, q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

0 − ε2
p

=vF, t ¼ qvF=Z,
and Z ¼ qvF coshðqdsÞ þ iε sinhðqdsÞ [41]. The inter-
channel hopping with the amplitude t allows the formation
of closed electron orbits of nonzero area and, thus, can
strongly affect the electron transfer through the nanowire
due to the interference between the channels. Such a model
provides the simplest way to clarify whether these closed
orbits can cause the interplay between the 2Φ0 and Φ0 flux
periodicities in the critical current corresponding to the AB
interference of electrons and Cooper pairs.
In Fig. 3 we present the results of the critical current

calculations for the energy spectrum (see Ref. [42] for
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FIG. 2 (color online). The critical current Ic vs the magnetic
field H. We choose T ¼ 0.1 K, Δ1 ¼ 7.5 K, Δ2 ¼ 1 K,
vF ¼ 3 × 105 m=s, L ¼ 2 μm, and (a) D ¼ 15 nm and (b),
(c) D ¼ 50 nm. We also take (a) g1 ¼ g2 ¼ 1.5, (b) g1 ¼ 0
and g2 ¼ 10, (c) g1 ¼ 1 and g2 ¼ 10.
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details). The period of IcðHÞ oscillations strongly depends
on both temperature T and the parameter pFL0 ¼
2pFðLþ 2dsÞ. This parameter can be different in different
samples, resulting in the quasiparticle energy spectrum and
Josephson current which fluctuate from sample to sample
(mesoscopic fluctuations). In the limit ds ≫ vF=Δ0, we get
the case of independent channels considered above and
restore the Φ0 periodicity of the IcðHÞ oscillations. A
substantial difference between the curves IcðTÞ for Φ ¼ 0
and Φ ¼ Φ0 appears only for ds < vF=Δ0 (this limit is
easily achievable since the induced gap Δ0 can be much
smaller than the gap Δs in the bulk of the S leads). In this
regime the Andreev reflection is weak and one can clearly
see the Φ0 − 2Φ0 crossover. For low temperatures
T < vF=L0, the curves in Fig. 3 are strongly different
since the system transparency and the corresponding
critical current oscillate with the electron AB period
2Φ0. For higher temperatures, the normal metal coherence
length vF=T can become less than the length L0 of the
closed electron path and the 2Φ0-periodic interference of
electrons cannot contribute to the superflow through the
junction. Thus, with the temperature increase (T > vF=L0),
the difference between curves in Fig. 3 vanishes and Ic
oscillates with the AB period of the Cooper pairs (Φ0). Note
that for pFL0 ¼ π=2, the energy spectrum reveals the
symmetry εðΦþ Φ0;φþ πÞ ¼ εðΦ;φÞ [42] and, thus, the
IcðHÞ oscillations have the period Φ0 for all temperatures.
At temperatures close to Tc, it is natural to expect that the

system behavior can be described by the Ginzburg-Landau
model modified to include the Zeeman and spin-orbit
interactions. Keeping only the terms of the order OðΨ2Þ,
we consider the free energy F in the form [43,44]

F ¼
X
n¼1;2

Z
fajΨnj2 þ γjD̂xΨnj2 þ βjD̂2

xΨnj2

− νH½ΨnðD̂xΨnÞ� þΨ�
nðD̂xΨnÞ�gdx; ð11Þ

where Ψn is the superconducting order parameter in the n-
th channel, aðxÞ ∼ ½T − TcðxÞ�, and, inside the wire a > 0,
D̂x ¼ −i∂x þ 2πAx=Φ0 and the constant ν ∼ αg describes

the strength of the spin-orbit coupling. The oscillatory
behavior of Ψn due to the Zeeman interaction reveals only
for the magnetic fields above the tricritical Lifshitz point,
i.e., for γ < 0 [7]. Accounting for the higher order gradient
term with β > 0 in Eq. (11), one finds an additional
characteristic length scale ξf ¼

ffiffiffiffiffiffiffiffiffiffi
β=jγjp

corresponding to
the period of the gap function oscillation in the Fulde-
Ferrell-Larkin-Ovchinnikov phase. The Josephson current
for γ ¼ 0 has previously been calculated in Ref. [45]. Here
we analyze the case of an arbitrary negative γ restricting
ourselves by the condition ξf < ξ ¼ ffiffiffiffiffiffiffiffiffiffijγj=ap

, meaning the
absence of the intrinsic superconductivity in the wire. For
simplicity, we also assume that (i) the spin-orbit coupling is

weak and can be treated perturbatively, (ii)L ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ ξfξ

q
,

(iii) inside the S leads the Zeeman interaction is negligible,
(iv) the conductivity of the S leads well exceeds the one in
the wire, so the inverse proximity effect can be neglected,
(v) at the S-nanowire interfaces there is no barrier and, thus,
the order parameter is continuous at x ¼ �L=2:
Ψnð�L=2Þ ¼ Δn exp ð�iφ=2Þ. Using the boundary con-
ditions, we find the supercurrent jx ¼ −cδF=δAx in the
n-th channel [42]: jn ¼ jðnÞc sin ½φþ ð−1ÞnπΦ=Φ0 þ φ0�,
where sinφ0 ¼ sinhðsLÞ cos χ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 χ þ sinh2ðsLÞ

p
,

jðnÞc ¼ 16jejβΔ2
nk−

ðξfξÞ3=2kþ
e−k

−L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2χ þ sinh2ðsLÞ

q
; ð12Þ

sinðχ−kþLÞ¼kþðξf−2ξÞ ffiffiffiffiffiffiffiffiffi
ξ=ξf

p
, s ¼ νH=ð4βkþk−Þ, and

k� ¼ ξ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðξ=ξf � 1Þ=2p

.
Summing up the contributions from both channels, we

find the magnetic field dependence of the critical current
demonstrating the multiperiodic magnetic oscillations. The
period of the fast oscillations is again equal to Φ0=LD,
while the slow oscillations caused by the Zeeman inter-
action are determined by the dependence of the coefficient
γ onH. For long junctions with L ∼ s−1, the term sinh2ðsLÞ
can result in an increase in Ic with increasingH. Obviously,
this effect can be suppressed because of a damping of the
superconductivity inside the S leads due to the magnetic
field. However, for the Pb films and LaAlO3=SrTiO3

heterostructures with strong spin-orbit coupling in rather
small magnetic fields, the increasing dependencies TcðHÞ
were observed [46]. In this case, as follows from Eq. (12),
the dependencies IcðHÞ should reveal the increasing trend
due to the spin-orbit coupling.
To sum up, we have suggested phenomenological

models describing the distinctive features of the very rich
interference physics in nanowires coupled to the super-
conducting leads. These generic models allowed us to
demonstrate the crucial role of electron spectrum non-
parabolicity for the φ0-junction formation, to explain the
multiperiodic magnetic oscillations in the Josephson trans-
port through Bi nanowires [20], and also to predict the
fundamental period doubling for the SQUID-like critical
current oscillations. The discovered phenomena are of
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FIG. 3 (color online). (a) The temperature crossover from the
2Φ0-periodic to the Φ0-periodic oscillation of the critical current
Ic. The curves correspond to Φ ¼ 0 and Φ ¼ Φ0. We take
L ¼ ds ¼ 0.01vF=Δ0 and pFL0 ¼ π=4þ 2πm (m is an integer
number). (b) Dependencies IcðΦÞ for T=Δ0 ¼ 5 and
pFL0 ¼ ηþ 2πm, where the values η are shown near the curves.
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current importance for the superconducting electronics
since they may open a way for the new generation of
Josephson π- and φ0-junctions in which the current-phase
relation can be tuned by the magnetic field.
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