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Tunable Spin-Qubit Coupling Mediated by a Multielectron Quantum Dot
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We present an approach for entangling electron spin qubits localized on spatially separated impurity
atoms or quantum dots via a multielectron, two-level quantum dot. The effective exchange interaction
mediated by the dot can be understood as the simplest manifestation of Ruderman-Kittel-Kasuya-Yosida
exchange, and can be manipulated through gate voltage control of level splittings and tunneling amplitudes
within the system. This provides both a high degree of tunability and a means for realizing high-fidelity
two-qubit gates between spatially separated spins, yielding an experimentally accessible method of
coupling donor electron spins in silicon via a hybrid impurity-dot system.
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Single spins in solid-state systems represent versatile
candidates for scalable quantum bits (qubits) in quantum
information processing architectures [1-6]. In many pro-
posals involving single-spin qubits localized on impurity
atoms [2,7] and within quantum dots [1,8], two-qubit
coupling schemes harness the advantages of tunneling-
based nearest-neighbor exchange interactions: exchange
gates are rapid, tunable, and protected against multiple
types of noise [9-13]. These features have been demon-
strated for electron spins in quantum dots [14-18], while
a similar demonstration for spins localized on impurity
atoms such as phosphorus donors in silicon remains an
outstanding experimental challenge [6,19].

Although the exchange interaction originates from the
long-range Coulomb interaction, directly coupling two
spins via exchange typically has a strength that decays
exponentially with distance [8,20]. Many approaches to
implementing long-range interactions therefore involve
identifying a system that acts as a mediator of the inter-
action between the qubits, with proposed systems including
optical cavities and microwave stripline resonators [21-26],
floating metallic [27] and ferromagnetic [28] couplers, the
collective modes of spin chains [29-31], superconducting
systems [32,33], and multielectron molecular cores [34].
Recently, long-range coupling of electrons located in the
two outer quantum dots of a linear triple-dot system has been
demonstrated [35,36]. The effective exchange interaction
in that system arises from electron cotunneling between the
outer dots and exhibits the fourth-order dependence on
tunneling amplitudes that is characteristic of superexchange
[37], but suffers from a large virtual energy cost from the
doubly occupied center dot states. In contrast, a many-
electron quantum dot in the center can also couple distant
spins via the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction, with low-energy intermediate states [38,39],
but perhaps at the cost of low fidelity as impurity-Fermi sea
correlations become hard to disentangle [40,41].
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Here, we show that a multilevel quantum dot containing
two electrons can mediate a high-fidelity exchange inter-
action between two spatially separated single-electron
spin qubits. We assume in what follows that the qubit
electrons are localized on single-level impurity atoms, but
our analysis also maps directly to the case of a triple
quantum dot system [35,36] with the same level structure
and electron occupation. Our approach suggests an exper-
imentally accessible method for achieving tunable coupling
between donor electron spins in silicon [19,42,43].

Hubbard model description.—The minimal model for
our approach comprises a two-level quantum dot coupled to
two impurities which are chosen to be near their ionization
point by appropriate choice of gate voltages. This reduces
to a multiorbital Hubbard model for a linear three-site
system in the four-electron regime [44,45]. We assume gate
voltages can be applied to the system such that the total
electron number can be set to be four, while the charge
stability diagram prefers the initial configuration of
(1, 2, 1). Here, (n;,ny, ng) represents the configuration
with n; (ng) electrons in impurity orbital L (R) and ny,
electrons in the mediator dot (Fig. 1). We work at a point in
the charge stability diagram where transitions to charge
configurations (0, 3, 1) and (1, 3, 0) are the closest available
charge states, with detunings A;, Ap [Fig. 1(a)].

We can write the Hamiltonian as Hy,, = H, + H,,
where

Hn = Zeini +7[I’l,'(l’li - 1) + Z%ninj
i i
+ lezc-lr.rrc;g’cl,o"clm (1)

o0/

H, = _Z Z (tLl'cj—,acL.ﬂ + [RiczgcR_,y + H.C.) (2)
i=12 o

with i, j = L, R, 1,2 denoting the impurity and dot orbitals
shown in Fig. 1(b). H, is diagonal with respect to the
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FIG. 1 (color online). (a) Charge stability diagram for the
combined impurity-dot three-site model (U = U, €,, = €,), with
the operating point indicated. (b) Schematic diagram showing the
orbitals of a pair of single-level impurity atoms coupled via a two-
level quantum dot. The electron occupation illustrates the initial
configuration (1, 2, 1). Arrows depict the tunneling amplitudes
defined in Eq. (2). Reversing the direction of an arrow corre-
sponds to taking the complex conjugate of the associated
tunneling amplitude. (c) Energy level diagram illustrating the
two-spin states of the mediator dot used in our calculation.

charge occupation defined by the set of eigenvalues of
the electron number operators n; = Y n;, = chzgci,a,
where czg creates an electron in orbital i with spin o.
The quantity ¢; denotes the on-site energy of orbital i.
U; and K;; are the Coulomb repulsion energies for two
electrons in the same orbital i and in different orbitals i and
J, respectively, and J, is the exchange energy for electrons
in orbitals 1 and 2 of the dot with spins ¢,¢6’ = 1, |. The
tunneling term H, couples subspaces of fixed charge
occupation and is expressed in terms of the complex
tunneling amplitudes f;;; between orbitals L,R and
orbital i of the dot [Fig. 1(b)].

In the present work, we are interested in a system where
we can effectively turn on and off the induced exchange,
either by gate voltage (varying the energy difference
between different charge sectors) or by tuning tunneling.
We consider our low-energy manifold to be the (1, 2, 1)
charge configuration with the center dot spins in the lowest-
energy singlet. This set of states is gapped (as noted below)
from other configurations by an energy that is large
compared to typical dilution refrigerator temperatures
and provides the starting point for our perturbation theory.

Since we assume at most single occupancy of orbitals L,
R, and 2 and a linear geometry for the three sites, we
implicitly have set U;, Ur — oo and have neglected U,
and K in Eq. (1). For simplicity, we assume symmetric
impurity-dot Coulomb repulsion energies [46] and set
K;; = Kg; = K, fori = 1, 2, while we take exchange terms
Jri = J; = 0, appropriate for weak tunneling. Since H,
couples only states with the same total spin Sy, and total
z component S,, we can independently consider the
two subspaces (S = 0,5, =0) and (S, = 1,5, =0).
Neglecting higher-energy states, the intermediate charge

configurations generated by H, within each spin subspace
are (0, 3, 1), (1, 3,0), and (1, 2%, 1), where n,;, = 2* denotes
an excited two-electron state of the dot with one electron in
each orbital (see Fig. 2). Choosing as the energy origin
Ey=¢; +¢eg+2¢ + U, + 4K, which is the energy of
the (1, 2, 1) states in the absence of tunneling, we find that
the zeroth-order energies of the (0, 3, 1) [(1, 3, 0)] states are

Apry=€—€rgy + W, (3)

where W = 2K + K, 4+ 2K, — J1». The energies of the
(1,2%,1) states depend on the two-spin state of the center
dot electrons: for the triplet and singlet states, the energies
[Fig. 1(c)] are, respectively,

AM:€2—€1+W—U1+K2—K12, (4)
A=Ay +2J1. (5)

Typical values for the energies A; Ag, Ay, A, in practice
range from ~20-500 peV, while the tunneling amplitudes
tr;ri in Eq. (2) are ~1-10 peV. Thus, H, can be regarded
as a perturbation to H,,.

Within our toy model, the effective exchange coupling
is given by the energy splitting between the states
|(1,2,1); Szg, S11) and | (1,2, 1);T(LO,%,S“> in the presence
of the tunneling term H,. Here, [S;;) and |T,(:")) represent
two-electron singlet and triplet spin states of the electrons
in orbitals i, j and m = 0, & indicates the spin magnetic
quantum number of the triplet state. Details of the fourth-
order perturbation theory analysis used to determine the
energy shifts are given in the Supplemental Material [47].
We find that the first-order and third-order corrections
to the energy vanish, while the second-order shifts are
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FIG. 2 (color online). ~ Schematic illustration of virtual tunneling
processes which give rise to the effective exchange interaction in
Eq. (6). The red (blue) arrows correspond to the process in which
the electron in orbital L (R) tunnels to the center dot in the first
step. Each step is labeled with the tunnel coupling for the
associated hopping term in H, [Eq. (2)], and the zeroth-order
energies of the charge configurations [Egs. (3)—(5)] are indicated.
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identical for both states. The fourth-order shifts 6E<S4) and
5E¥1 ) are therefore the lowest-order corrections that give

rise to an energy splitting. The difference 5E(T4 ) — 6E(S4) is
the Heisenberg exchange coupling J, which we find to be
given by

thotpiti t
J—= —p(-R2RULITLZ , ) 6
(ARAMAL Foc (6)

This is the central result of our paper: using an initial singlet
configuration yields an RKKY-like interaction [48], includ-
ing both small-energy intermediate states (A,; being small
compared to the dot charging energy) and nontrivial
interference terms (J depends on the phases of the tunnel-
ing terms in the presence of the magnetic fields typically
present in experiments).

Examining Eq. (6), we first remark that A, which differs
from A,, by the intradot exchange splitting 2./;,, does not
appear in this expression. From the dependence of Eq. (6) on
A, Ag, and A,,, we see that J is inversely proportional to
the energy detunings ¢, — €; and €, — € between orbital 2
of the quantum dot and the impurity orbitals as well as to the
on-site energy difference €, — €, between the two levels of
the quantum dot. As the detunings can be controlled via the
voltages applied to the dot and have a lower limit set only by
the tunnel coupling and magnetic field magnitudes, the
strength of the exchange coupling mediated by the two-level
dot is highly tunable. In contrast to cotunneling [35,36], this
tunability is not limited by the fixed charging energy
associated with virtual double occupation of the center
dot. Tuning the gate voltages applied to the impurities in
order to shift the impurity orbital levels away from their
ionization point effectively suppresses tunneling between the
impurities and the dot, enabling the exchange coupling to be
switched off. Alternatively, the coupling may be turned off
by initially transferring the qubit states from the electron
spins to the nuclear spins of the donors [2,49] and sub-
sequently ionizing the donors via the applied gate voltages.

We now turn to the phase dependence in Eq. (6). The
terms correspond to two alternative pathways for the
electrons which give rise to the effective coupling J
(Fig. 2); thus, the interaction can have interference between
these pathways, and their nontrivial relative phase for finite
magnetic fields leads to an interaction strength that depends
on the tunneling phase factors [48]. This provides a glimpse
of the beginning of the expected sign fluctuations in
exchange for a true RKKY interaction, where the finite
Fermi wave vector kr of the two-electron Fermi “sea”
matters. For phosphorus donor electrons in silicon, the
tunneling amplitudes also oscillate rapidly with the donor
positions due to interference between electronic states
associated with different degenerate minima, or valleys,
existing in the conduction band [50,51]. In the context of
our approach, this can be seen by taking ;;  (y;|y;) for
i=L,R and j=1,2, where Wi are superpositions of

orbital wave functions associated with each valley. The
oscillatory tunneling amplitudes lead to a spatial depend-
ence of the terms in Eq. (6) that requires control of the dot
center relative to the donor positions with precision on the
scale of the lattice constant in order to achieve a particular
coupling strength [52]. We note, however, that the sim-
plified model we use here does not take into account
interfacial disorder present in realistic silicon quantum dot
devices, which mixes valley eigenstates having different
phases [53-55] and may thus suppress valley interference
effects for dot-mediated donor coupling.

Charge noise and exchange gate fidelity.—Fluctuating
electric fields introduce variations in the parameters deter-
mining the effective exchange J in Eq. (6) and conse-
quently affect the operation of exchange-based gates
[1,56-58]. Here, we consider the effects of classical charge
noise on the detuning parameters A, for a = L, M,R
and calculate the fidelity of the exchange gate U(z)=
exp(—iH xen?), Where Hexen = —J[S1g,S11)(SLr. S11| and
|Srr, S11) is the corrected state after elimination of states
outside the (1, 2, 1) subspace (note that we suppress the
charge state in this notation, since the effective Hamiltonian
acts only in this subspace). Letting A, = A, + J,,
where o, represents small fluctuations about the average
detuning A,, and expanding to first order in o, gives
J—->J =J(1->,06,/A,). We assume that the fluctua-
tions o, are independent and described by Gaussian
distributions p,(8,) = e~%/2% /\/276, with charge noise
standard deviations o, [58]. The exchange gate in the
presence of these fluctuations is then given by U'(z) =
1+ (e”" = 1)[Sr, S11) (Sers Sul-

We define the minimum gate fidelity as F;,(7) =

eI ([ (wol U5 ()0 (2) lwo) %) 1591, where Up(z) =1+
(" = 1)[SLrs S11)(Ser, Suil is the ideal gate, |yo) =
(lTLR7S11> + ISR S11))/V2 = 11 d&. S11) is a state for

which the exchange gate error is maximized, and the

average is taken over the charge noise distributions. The
-2 /T2

envelope e 2" accounts for additional decay character-
ized by a time 75 over the gate duration 7 [60,61].

Evaluation of Fp, (eF'Ty =

e~ PP/ 0,0/ 8 pile Note that the amplitude of (e*/'7)
—22/T?

involves the terms

describes Gaussian decay of the form e « with a decay

time T, = (1/J)\/2/>_,0%/A2 [58]. Using the expres-

. 1 .
sions for (e*”/7), we find

e—ﬂ:z/T;2

Fuin(r) = —5— (14 & 127720080 7)

We plot this ﬁdelity for the square-root-of-swap
entangling gate UL\’ = [J(z/2J) [1] as a function of the
effective quantum dot level splitting A,, and symmetric

effective impurity-dot detunings A; = Ap =A; in
Fig. 3. For Ay, =90 ueV, A; =60 peV, and a tunnel
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FIG. 3 (color online). Minimum fidelity [Eq. (7)] of the square-
root-of-swap exchange gate Uli=0 (z/2J) as a function of
the quantum-dot level splitting A,, and impurity-dot detunings
Ay =Ap=A,forop =0 =0y =2 peV, T5 =1 ms [61,62],
and |t;;| = |tgi| = 1 =2 ueV [63].

coupling |7;;| = |tgi| =t =2 ueV, which is relevant
for phosphorus donors in silicon [42,43,63], we find
J=4t*/AgrAy A, =021neV. This exchange coupling
strength corresponds to a gate time 7y = 7/2J ~ 5 ps
and gate fidelity F,;, ~ 0.998. Thus, setting the quantum
dot level splitting and impurity-dot detunings to values
within an optimal range in principle enables high-fidelity
exchange gates. By contrast, the optimization of fidelity for
gates implemented via indirect exchange between the outer
electron spins of a triple quantum dot in the (1,1,1) regime
is more challenging [64]. We also note that a maximum

fidelity of 0.99 was obtained for Ui? implemented using
an indirect exchange coupling strength 210 peV in the
effective (1, 1, 1) regime of the molecular system consid-
ered in Ref. [34]. We therefore find that, for the approach
we describe, a smaller effective exchange coupling strength
does not fundamentally limit the exchange gate fidelity.

Finally, studies of exchange in multielectron quantum
dots [65-67] suggest that exchange coupling of the type
discussed in the present Letter, which is derived from
tunneling via an excited orbital of a multilevel quantum dot
with lower-energy orbitals filled by electron pairs, may
exhibit increased robustness against fluctuations caused by
charge noise due to screening of the Coulomb interaction
by the paired core electrons already present in the dot.
Varying the number of electrons in the dot changes the
spacing between the outermost levels [3] and consequently
Ay, so that J may be tuned in discrete steps. Provided this
discrete level description remains valid (i.e., for dot orbital
splittings large compared to the thermal energy kzT), the
larger sizes associated with multielectron dots may also
enable longer-range coupling.

Effects of inhomogeneous g factors.—While extensions
of our model to a large parallel magnetic field cause no

changes for homogeneous g factors, a difference in the g
factors of the impurities and the quantum dot [68] couples
the S =0 and S, = 1 subspaces. To investigate the
form of this coupling, we assume an applied magnetic
field B = B,Z and add a magnetic gradient term of the
form

Hy = % Z (niy —n;y) (8)

i=1.2

to the Hubbard Hamiltonian [Eqs. (1) and (2)], where Q, =
Ag.upB, is the magnetic field splitting due to a g-factor
gradient Ag, parallel to the external field [see Fig. 1(c)]. We
transform to a basis which diagonalizes Hy= H, + H,
and treat H, as a perturbation to H,. Keeping terms
up to second order in the tunneling amplitudes and up
to linear order in Q, we find that the correction to the
effective exchange Hamiltonian H., 1is given by

Hg:fg(|T201%’Sll><SLR»Sll|+ |SLR5511><T§401LS11|)’ where

Q (1t |igol?
S - . 9
e Y

From this expression, we see that the effects of the g-factor
inhomogeneity described by Eq. (8) can be eliminated up to
first order in €, and second order in the tunneling
amplitudes by choosing f;,, fzy, A; and Ay such that
the constraint A? /A% = |t;,|?/|tgo|* is satisfied. Note that
the preceding analysis assumes €, < A, r, which sets an
upper bound on J [see Eq. (6)]. For impurity atoms with
nonzero nuclear spin, hyperfine coupling represents an
additional source of magnetic gradients between the impu-
rity and dot electrons that may prove useful for alternative
coupling schemes. Indeed, for direct exchange coupling
between two donor electron spins in silicon, recent work
[69] shows that a difference in the hyperfine coupling
between the donors enables two distinct methods for
realizing high-fidelity two-qubit gates.

The validity of the model considered in the present Letter
is limited by the validity of the two-level approximation for
the mediator quantum dot in the presence of the Coulomb
interaction among the four electrons. Future work should
consider a detailed calculation of the effective exchange
interaction mediated by the two-level quantum dot in terms
of the general form of the pairwise Coulomb interaction
and explore how this analysis may be extended to gain
insight into the form of the coupling mediated by a
quantum dot with more than two levels.
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