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We consider the interplay between the antiferromagnetic and Kekulé valence bond solid orderings in the
zero energy Landau levels of neutral monolayer and bilayer graphene. We establish the presence of Wess-
Zumino-Witten terms between these orders: this implies that their quantum fluctuations are described by
the deconfined critical theories of quantum spin systems. We present implications for experiments,
including the possible presence of excitonic superfluidity in bilayer graphene.
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Introduction.—A number of recent experimental [1–7]
and theoretical [8–19] works have focused on the presence
of antiferromagnetism in neutral monolayer and bilayer
graphene in an applied magnetic field. It has also been
argued that a nonmagnetic state with lattice symmetry
breaking in the Kekulé valence bond solid (VBS) pattern
(see Fig. 1) is proximate to the antiferromagnetic (AF) state
[13,14,17,18]. Bilayer graphene offers a particularly attrac-
tive area for studying the interplay between the AF and
VBS order because it may be possible to tune between them
by applying a transverse electric field [1,14,18].
The presence of the competing AF and VBS orders sets

up the possibility [18] of novel quantum criticality between
these orders, similar to that found in insulating quantum
spin models [20–30]. However, these quantum spin models
apply in the limit of very large on-site Coulomb repulsion
between the electrons, and this is not the appropriate
parameter regime for graphene. Here we examine a com-
plementary limit of large magnetic field and moderate
interactions, so that it is permissible to project onto an
effectiveHamiltonian acting only on the zero energyLandau
levels. Such a limit has been widely used with considerable
success in describing the properties of graphene. (Note,
however, that we are still in the regime where the cyclotron
gap is still smaller than the tight-binding hopping param-
eters, with magnetic fields smaller than 10 T.) Our main new
result is that the Landau level projected effective action for
the AF and VBS orders has a topological Wess-Zumino-
Witten (WZW) term [31–33] for both the monolayer and
bilayer cases.
The WZW term has a quantized coefficient, and it

computes a Berry phase linking together spatial and
temporal textures in the AF and VBS orders. It can be
viewed as a higher dimensional generalization of the Berry
phase of a single spin S degree of freedom, which is equal
to S times the area enclosed by the spin worldline on the
unit sphere. Similarly, the WZW term here measures the
area on the surface of the sphere in the five-dimensional AF
and VBS order parameter space. The presence of this term

implies [34–36] that the field theories of deconfined
criticality [21,22] apply to graphene. Such theories describe
the quantum phase transition not in the conventional
Landau terms of fluctuating order parameters, but using
fractionalized degrees of freedom coupled to emergent
gauge fields. We will also discuss experimental implica-
tions of these results.
Model and results.—We begin by directly stating the

Hamiltonian of the low energy graphene bands (see, e.g.,
Refs. [16,18] for details)

H ¼ v

�
0 aq

a†q 0

�
; ð1Þ

where v is a Fermi velocity, a¼px−ipy−ðe=cÞðAx−iAyÞ
with ðpx; pyÞ the electron momentum, ðAx; AyÞ is the vector
potential of the applied magnetic field, the matrix acts on
the graphene sublattice index, and q ¼ 1 for monolayer
graphene, while q ¼ 2 for the bilayer case. For bilayers, the
sublattice index coincides with the layer index. For both
monolayers and bilayers, there is an additional twofold
valley degeneracy, along with the usual twofold spin
degeneracy (in the absence of a Zeeman coupling).

FIG. 1 (color online). AF (left) and Kekulé VBS states of
bilayer graphene. The blue (red) lines indicate the honeycomb
lattice of the top (bottom) layer. The ellipses in the VBS state
denote the links between the top and bottom layers which are
equivalently distorted with respect to the parent lattice.
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The a, a† obey commutation relations proportional to
those of the ladder operators of a harmonic oscillator, and
so it is easy to diagonalize H. In this manner we obtain q
zero energy Landau levels, which are spanned by the
orthonormal eigenfunctions ψ lðrÞ, where l ¼ 1;…; qNΦ,
withNΦ the number of flux quanta. So wewrite the electron
annihilation field operator projected to the zero energy
Landau levels as

ΨðrÞ ¼
XqNΦ

l¼1

ψ lðrÞcl; ð2Þ

where cl is canonical fermion annihilation operator. In the
zero energy Landau levels, the valley, sublattice, and layer
indices all coincide; henceforth we will refer to this as a
valley index, and it can take two values. The fermion
operators also carry a spin index with two possible values,
and we do not explicitly display the spin or valley indices.
We now introduce Pauli matrices σx;y;z which act on the

spin space, and a second set ρx;y;z which acts on the valley
space (here we follow the conventions of Ref. [18]). In
terms of these matrices, the three-component AF order is
measured by ðρzσx; ρzσy; ρzσzÞ while the two-component
VBS order parameter is ðρx; ρyÞ.
It is convenient to write the above matrices as

Γ1 ¼ ρzσx; Γ2 ¼ ρzσy; Γ3 ¼ ρzσz;

Γ4 ¼ ρx; Γ5 ¼ ρy

and to notice that the 5 Γa matrices anticommute and square
to unity; indeed these are the 5 Dirac gamma matrices.
Their 10 products iΓaΓb (a ≠ b) realize the Lie algebra of
SO(5), and the 15 matrices Γa and iΓaΓb realize the Lie
algebra of SU(4).
Next, we introduce a five-component unit vector naðr; τÞ,

where r ¼ ðx; yÞ are the spatial coordinates and τ is
imaginary time, representing the combined spacetime
fluctuations of the AF and VBS orders. Then the imaginary
time Lagrangian of the electrons projected to the zero
energy Landau levels is

L ¼
XqNΦ

l¼1

c†l
∂cl
∂τ − λ

Z
d2rnaðr; τÞΨ†ðr; τÞΓaΨðr; τÞ; ð3Þ

where λ is the coupling of the electrons to the AF and VBS
orders, and there is an implicit sum of a over five values,
and also over the spin and valley indices. The λ term arises
from a decoupling of the electron-electron interactions
specified in Refs. [13,17,18].
Now we can state our primary result. We integrate over

the cl electrons in L and obtain an effective action for unit
vector naðr; τÞ. Apart from the usual terms of the O(5)
nonlinear sigma model considered in Ref. [17] (and
anisotropies due to the Zeeman coupling, electron-electron

interactions, and a possible transverse electric field for
bilayers), the effective action has a topological WZW term
at level q,

SWZW ¼ 2πiqW½na�;

W½na� ¼
3

8π2

Z
1

0

du
Z

d2rdτϵabcdena∂xnb∂ync∂τnd∂une:

ð4Þ

Here we have introduced the extra coordinate u, and
naðr; τ; uÞ is any function which smoothly extrapolates
from the physical naðr; τÞ at u ¼ 1 to a fixed value (say)
na ¼ ð1; 0; 0; 0; 0Þ at u ¼ 0. The choice of the extrapola-
tion can only change W½na� by integers, and so e2πiqW is
well defined.
In the case of graphene in zero magnetic field and weak

interactions, the same WZW term between the Néel and
VBS orders is also present [37]. However, for the exper-
imentally important case of bilayer graphene, there is no
such WZW term for the AF and VBS orders at zero field
and weak interactions [18,38] (although, E.-G. Moon has
noted such a term for the quantum spin Hall order [38]); so,
in this case the zero energy Landau level projection is
crucial for obtaining the topological coupling.
Such a WZW term has a strong impact in the interplay

between the order parameters. As we will review below, it
topologically links AF order to defects of the VBS order,
and vice versa.
Derivation.—We provide two derivations of Eq. (4).
First, pick any three of the five na components, say

a ¼ u; v; w, and set the other two to zero. Then we have

unit 3-vector field ~N ¼ ðnu; nv; nwÞ. Now consider a static

Skyrmion texture in ~NðrÞ. Then by a computation parallel
to that in Section III.B of K. Moon et al. [39] (and its
generalization to q ¼ 2 [40]), the Skyrmion acquires a
“charge.” In the present situation the charge is measured by
iΓuΓvΓw and its spatial density is [41]

hΨ†ðrÞiΓuΓvΓwΨðrÞi ¼ q
2π

~N · ð∂x
~N × ∂y

~NÞ; ð5Þ

where the angular brackets represent the expectation value
over the occupied states in the zero energy Landau level

perturbed by the texture in ~N as in L. (A similar relation-
ship has been noted in monolayer graphene in zero
magnetic field [42]; however, no such relationship applies
to bilayer graphene in zero field.) Now consider a VBS
vortex, i.e., a 2π vortex in ðn4; n5Þ applied to L. For a two-
component order, the core of the vortex has a singularity,
but this can be relieved by orienting na in a third direction,
say ð�1; 0; 0; 0; 0Þ. Now the VBS vortex is equivalent to a

half-Skyrmion in ~N ¼ ðn1; n4; n5Þ, and after integrating
Eq. (5) over all space, this vortex has hσxi ¼ �q. Similarly,
vortex cores in the directions ð0;�1; 0; 0; 0Þ and
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ð0; 0;�1; 0; 0Þ yield hσyi ¼ �q and hσzi ¼ �q. So we
reach the important conclusion that the VBS vortex has
total spin S ¼ q=2, and has an associated ðqþ 1Þ-fold
degeneracy. For q ¼ 1, note that this is precisely the
situation considered in Ref. [43] for quantum spin models
(see also Ref. [44]). Alternatively, we can examine the fate
of SWZW in the presence of such VBS vortices: following a
computation by Grover and Senthil [36], we find that the
WZW term reduces to the quantum Berry phase of a single
spin with S ¼ q=2. From this we conclude that Eq. (5)
implies Eq. (4).
For a second derivation of the WZW term from Eq. (3),

we examine a diagrammatic expansion of L. Consider a
situation where na is polarized near, say, (0,0,0,0,1). Then,
we can write na ¼ ðπ1; π2; π3; π4; 1Þ where jπij ≪ 1 for
i ¼ 1;…; 4. Then to zeroth order in the πi, the cl operators
in L have the Green’s function

G ¼ ðiωþ λΓ5Þ−1; ð6Þ

where ω is the frequency of the electron propagator. We
now proceed to integrate out the electrons, and derive an
effective action for the πi. At fourth order in the πi, we
consider the box diagram in Fig. 2; this can be evaluated by
methods similar to those in Ref. [18], but with the G above,
and the vertices contributing the factors implied by Eq. (3).
A computation described in the Supplemental Material [41]
yields the contribution

Sπ ¼
i3q
16π

Z
d2rdτϵijkmπi∂xπj∂yπk∂τπm: ð7Þ

It can be checked that Eq. (4) reduces to Sπ for
na ¼ ðπ1; π2; π3; π4; 1Þ, and so SWZW is the explicitly
SO(5) invariant form of Sπ .
Theoretical consequences.—We now turn to a discussion

of the theoretical consequences of the WZW term for the
vicinity of the AF-VBS transition. For q ¼ 1, it has been

demonstrated in Refs. [35,36,43] that the O(5) nonlinear
sigma model with Oð3Þ × Oð2Þ anisotropy and a level
1 WZW term is equivalent to the CP1 model in 2þ 1
dimensions. This is the same model appearing in the AF-
VBS transition of SU(2) quantum spin models [21,22], and
is a relativistic field theory with a U(1) gauge field and a
two-component complex scalar zα. In terms of these fields,
the AF order is z�ασsαβzβ, with s ¼ x; y; z; so the vector
AF order has been “fractionalized” into spinons zα.
Alternatively, we can also view the zα quanta as represent-
ing the vortices or antivortices in the VBS order [43] which,
as we have just seen, carry spin S ¼ 1=2.
Presently, the experimentally accessible case of the AF-

VBS transition is in bilayer graphene, so we focus now on
the q ¼ 2 case. With a level 2 WZW term, the VBS vortices
carry spin S ¼ 1, and therefore we need complex scalar
fields with three components: we write these as Zs, with
s ¼ x; y; z. The field theory of the Zs quanta is now the CP2

model with anisotropic quartic terms; such a field theory
was considered in Ref. [45] in a different context:

Lcp ¼ jð∂μ − iAμÞZsj2 þ gjZsj2 þ u1ðjZsj2Þ2
þ u2ðZ2

sÞðZ�2
t Þ:

Here μ is a spacetime index, Aμ is the emergent U(1) gauge
field, g is the coupling which tunes the AF to VBS
transition, and u1;2 are quartic couplings. In terms of the
degrees of freedom in Lcp, the three-component AF order
parameter is now iϵstuZ�

t Zu, while the complex VBS order
hρx þ iρyi ∼ eiθ is the monopole operator in the U(1) gauge
field [20,22].
For both the CP1 and CP2 models mentioned above, both

first and second order transitions are possible between the
AF and VBS states. A recent numerical study [17] on a
single layer model indicates a first order transition for the
parameters studied.
Experimental implications.—Finally, we turn to exper-

imental consequences for bilayer graphene. The defining
characteristic of deconfined criticality is the presence of a
gapless “photon” excitation of an emergent U(1) gauge field
[21]. This is associated with the Aμ above, and can also be
interpreted as a “spin-wave" excitation involving fluctua-
tions of the angle θ. Our definition of θ shows that it is the
angular phase associatedwith off-diagonal-long-range order
(ODLRO) in valley space. The valley anisotropy terms in
graphene are very small [13,17], because it is suppressed by
powers of the lattice spacing to the magnetic length; so we
expect a nearly gapless θ spin-wavemode to be present (and
most of the remarks below to also apply) even in the case of a
first-order transition.
Now recall the fact, noted earlier, that in the zero energy

Landau levels the valley index coincides with the layer
index of bilayer graphene (and also the sublattice index). So
ODLRO in valley space is accompanied by ODLRO in the

FIG. 2. Box diagram leading to Sπ . The full lines are the
Green’s function in Eq. (6) at the labeled frequencies, and the
vertices are the λ term in Eq. (3).
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layer space; i.e., θ is also the angular phase of interlayer
excitonic superfluidity. Signatures of excitonic superflu-
idity have been observed in quantum Hall states in GaAs
bilayers [46]. However, in the GaAs bilayers there is
negligible tunneling of electrons between the layers, and
this crucial to the emergence of a U(1) symmetry which is
broken by the excitonic condensate. So it might seem
surprising that a similar superfluidity can be present in
graphene bilayers, in the presence of very strong tunneling
between the layers. The resolution is the identification of
the layer and valley indices in the zero energy Landau
levels of bilayer graphene: in the absence of intervalley
scattering by impurities, and the irrelevancy of valley
anisotropy terms to be presented below, there is also an
emergent interlayer U(1) symmetry in bilayer graphene.
The counterflow electrical current can be written in terms

of the gauge field

Jtμ − Jbμ ¼
4e
2π

ϵμνλ∂νAλ; ð8Þ

where Jt and Jb are the currents in the top and bottom
layers, and e is the charge of the electron. The factor of 4 is
deduced from Eq. (5), which shows that a AF Skyrmion in
ðn1; n2; n3Þ has excitonic charge density hρzi ¼ 4 for
q ¼ 2. The counterflow conductivity can be computed
from Eq. (8) using Lcp; at the g ¼ gc deconfined quantum
critical point this implies a universal value of order, the
quantum unit of conductance e2=h.
For g > gc, in the VBS state, the conductivity should be

computed using an effective action for θ which includes the
influence of monopoles. Now the current is

Jtμ − Jbμ ¼ 4eρs∂μθ; ð9Þ

where ρs is the stiffness of the excitonic superfluidity
appearing the effective Lagrangian density

Lθ ¼
ρs
2
ð∂μθÞ2 − y3 cosð3θÞ; ð10Þ

with y3 the fugacity of tripled monopoles which are
allowed by the threefold rotational symmetry of the under-
lying honeycomb lattice [20]. The stiffness vanishes as
ρs ∼ ðg − gcÞν by the Josephson relation, where ν is the
correlation length exponent. Away from the critical point,
the bare value y03 is proportional to the very small threefold
valley anisotropy term [13,17]; y3 has a further suppression
[22,47] from the critical fluctuations of Lcp leading to
y3 ¼ y03ðg − gcÞνΔ, where Δ is the scaling dimension of
the tripled monopole operator. So the effective “interlayer
tunneling” term, y3, is highly suppressed near the decon-
fined quantum critical point. We also note that numerical
studies on square lattice antiferromagnets have provided
striking evidence for the emergent U(1) symmetry due to
the suppression of monopoles [48], and there is direct

evidence for the suppression of monopoles on the honey-
comb lattice in the work of Block et al. [27].
In GaAs bilayers [46], the excitonic superfluidity is most

directly observed in counterflow experiments, where elec-
tric currents flow in the opposite direction in the two layers.
This would be technically more difficult in bilayer gra-
phene, given the close spacing of the layers, but experi-
ments of this type would be ideal. In the bilayer graphene
experiments of Weitz et al. [1], there is a Zeeman coupling
to the magnetic field (whose consequences have been
studied earlier [22]), and an electric field is applied trans-
verse to the layers. The electric field provides a small
breaking of the layer-exchange symmetry. In the presence
of such a symmetry breaking, there is a coupling between
the counterflow and parallel current modes, and a vestige of
the counterflow superfluidity would also be present in a
measurement of the total current in both layers. Weitz et al.
observe a phase transition out of the (presumed) AF state,
signaled by the enhancement of the conductivity. We
propose that this enhancement is due to the coupling to
counterflow superfluidity.
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