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We study how strongly correlated electrons on a dissipative lattice evolve out of equilibrium under a
constant electric field, focusing on the extent of the linear regime and hysteretic nonlinear effects at higher
fields. We access the nonequilibrium steady states, nonperturbatively in both the field and the electronic
interactions, by means of a nonequilibrium dynamical mean-field theory in the Coulomb gauge. The linear
response regime, limited by Joule heating, breaks down at fields much smaller than the quasiparticle energy
scale. For large electronic interactions, strong but experimentally accessible electric fields can induce a
resistive switching by driving the strongly correlated metal into a Mott insulator. We predict a
nonmonotonic upper switching field due to an interplay of particle renormalization and the field-driven
temperature. Hysteretic I-V curves suggest that the nonequilibrium current is carried through a spatially
inhomogeneous metal-insulator mixed state.
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The understanding of solids driven out of equilibrium by
external fields [1,2] has been one of the central goals in
condensed matter physics for the past century and is very
relevant to nanotechnology applications such as resistive
transitions. Multiple studies of this phenomenon have been
performed in semiconductors and oxides [3–10]. In oxides,
the application of an electric field can lead to a dramatic
drop of resistivity up to 5 orders of magnitude. The
relatively accessible threshold fields Eth ∼ 104–6 V=m
and the hysteretic I-V curves make them good candidates
for the fabrication of novel electronic memories. A Landau-
Zener type of mechanism [11] seems unlikely as it predicts
a threshold field on the order of 108–9 V=m. In narrow gap
chalcogenide Mott insulators, an avalanche breakdown was
suggested with Eth ∼ E2.5

gap [3]. Yet, the resistive switchings
in other classes of correlated materials do not seem to
involve solely electronic mechanisms. In organic charge-
transfer complexes, it is believed to occur via the electro-
chemical migration of ions [4,5]. Finally, there are strong
indications that a Joule heating mechanism occurs in some
binary oxides such as NiO [7] and VO2 [8–10]: the electric-
field-driven current locally heats up the sample which
experiences a temperature-driven resistive switching.
These experiments raise basic questions of how a

strongly correlated state continuously evolves out of
equilibrium under an external field, and how we describe
the nonequilibrium steady states that consequently emerge.
We develop a much needed basic microscopic theory of the
driven metal-insulator transition.
Building on earlier theoretical efforts [11–27], we

identify, in a canonical model of strongly interacting
electrons, a region where electric-field-driven resistive
switching takes place. We demonstrate how Joule heating

effects modify the linear response regime and how, away
from the linear regime, the same Joule physics leads to the
hysteretic resistive transitions of the strongly correlated
system. The derived energy scales for resistive transitions
are orders of magnitude smaller than bare model param-
eters and belong within the feasible experimental range.
We study the Hubbard model in a constant and homo-

geneous electric field E which induces electric current J.
After a transient regime, a nonequilibrium steady state
establishes if the power injected in the system, J ·E, is
balanced by coupling the system to a thermostat which can
absorb the excess of energy via heat transfer [14,15,21–24].
The thermostat is modeled by identical fermion reservoirs
attached to each tight-binding (TB) site. In the Coulomb
gauge, the electric field amounts in an electrostatic poten-
tial −lE imposed on the lth TB site (l ¼ −∞;…;∞) and
on its associated fermion bath [15]. The model is fully
consistent with gauge-covariant models [23]. The non-
interacting Hamiltonian reads

Ĥ0 ¼ −γ
X

lσ

ðd†lþ1;σdlσ þ H:c:Þ

−
gffiffiffiffi
V

p
X

lασ

ðd†lσclασ þ H:c:Þ þ
X

lασ

ϵαc
†
lασclασ

−
X

lσ

lE
�
d†lσdlσ þ

X

α

c†lασclασ

�
; ð1Þ

where d†lσ are the tight-binding electron creation operators
at the lth site with spin σ ¼ ↑ or ↓, and c†lασ are the
corresponding reservoir electron operators attached. α is a
continuum index corresponding to the reservoir dispersion
relation ϵα defined with respect to the electrostatic potential
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−lE. g is the overlap between the TB chain and the
reservoirs of length V which will be sent to infinity. We
assume that the reservoirs remain in equilibrium at bath
temperature Tb. Later, we will extend this chain into a
higher dimensional lattice. The electric field does not act
within each reservoir whose role is to extract energy but not
electric charge from the system [15]. We use a flat density
of states (infinite bandwidth) for the reservoir spectra, and
define the damping parameter as Γ ¼ V−1πg2

P
αδðϵαÞ. We

work with ℏ¼ e¼ kB ¼ a¼ 1 in which e is the electronic
charge and a is the lattice constant. In the rest of this Letter,
we measure energies in units of the full TB bandwidth
W ¼ 4γ ¼ 1 (1D) and W ¼ 12γ ¼ 1 (3D). The exact
solution of the noninteracting model in Eq. (1) has been
shown [14,15] to reproduce the conventional Boltzmann
transport theory despite the lack of momentum transfer
scattering. The Hubbard model Ĥ ¼ Ĥ0 þ Ĥ1 is defined
with the on-site Coulomb interaction parameter U as

Ĥ1 ¼ U
X

l

�
d†l↑dl↑ −

1

2

��
d†l↓dl↓ −

1

2

�
: ð2Þ

Our calculations are in the particle-hole symmetric limit.
We use the dynamical mean-field theory (DMFT

[16,28]) to treat the many-body interaction via a self-
consistent local approximation of the self-energies. Note
that the self-energy has contributions from both the many-
body interaction Ĥ1 and the coupling to the reservoirs:
Σr
totðωÞ¼−iΓþΣr

UðωÞ and Σ<
totðωÞ ¼ 2iΓfFDðωÞ þ Σ<

UðωÞ
with the Fermi-Dirac (FD) distribution fFDðωÞ≡
½1þ expðω=TbÞ�−1. Once the local retarded and lesser
self-energies are computed, one can access the full retarded
and lesser Green’s functions (GFs). Note that, in a
homogeneous nonequilibrium steady state, all the TB sites
are equivalent. In the Coulomb gauge, this leads to
Gr;<

ll0 ðωÞ ¼ Gr;<
lþk;l0þkðωþ kEÞ and similarly for the self-

energies [15,25], as can be derived via a gauge trans-
formation from the temporal gauge.
Below, we present the implementation of our DMFT

scheme in the Coulomb gauge directly in the steady states.
It consists in singling out one TB site—say l ¼ 0—(often
referred as impurity) and replacing its direct environment
(i.e., semi-infinite dissipative Hubbard chains and its own
reservoir) with a self-consistently determined noninteract-
ing environment (often referred as Weiss “fields”). The
local electronic problem is then treated by means of an
impurity solver.
For a given self-energy [Σr;<

l ðωÞ≡ Σr;<
U ðωþ lEÞ],

the on-site Green’s functions obey the following Dyson
equations:

GrðωÞ−1 ¼ ω − Σr
totðωÞ − γ2Fr

totðωÞ; ð3Þ

G<ðωÞ ¼jGrðωÞj2½Σ<
totðωÞ þ γ2F<

totðωÞ�; ð4Þ

in which γ2Fr;<
tot are the total hybridization functions to the

left and right semi-infinite chains, Fr;<
tot ðωÞ¼Fr;<

þ ðωþEÞþ
Fr;<
− ðω−EÞ. FþðωÞ is the on-site retarded GF at the end of

the rhs chain (l ¼ 1) which obeys the self-similar Dyson
equation

FrþðωÞ−1 ¼ ω − Σr
totðωÞ − γ2Frþðωþ EÞ; ð5Þ

which can be solved recursively after more than 500
iterations. F−ðωÞ corresponds to the GF of the lhs chain
and can be obtained similarly. The noninteracting parts of
the impurity GFs, G, are constructed using

GrðωÞ−1 ¼ ωþ iΓ − γ2Fr
totðωÞ; ð6Þ

G<ðωÞ ¼j GrðωÞj2½2iΓfFDðωÞ þ γ2F<
totðωÞ�: ð7Þ

The local self-energies are obtained by means of the
iterative-perturbation theory up to the second-order in
the Coulomb parameter U: Σ≷

UðtÞ ¼ U2½G≷ðtÞ�2G≶ðtÞ.
The GFs are updated with this self-energy using the above
Dyson’s equations, and the procedure is repeated until
convergence is achieved.
We generalize the above method to higher dimensions.

With the electric field along the principal axis direction,
E ¼ Ex̂, the lattice is translation invariant in the
perpendicular direction and the above construction of the
Dyson’s equation can be carried out independently per each
perpendicular momentum vector. See Supplemental
Material [29] for a detailed discussion. Below, we present
results of the model in one and three dimensions.
First, we discuss the linear response regime. Within the

DMFT, the dc conductivity in the limit of zero temperature
and zero electric field can be obtained via the Kubo
formula as σdc ∝ limω→0

P
k

R
dνρkðνÞρkðνþωÞ½fFDðνÞ−

fFDðνþωÞ�=ω¼P
k

R
dν½ρkðνÞ�2δðνÞ with the spectral

function at a given wave vector k, ρkðνÞ ¼
−π−1Im½ν − ϵk þ iΓ − Σr

UðνÞ�−1. Therefore, as long as
Σr
UðνÞ → 0 as ν → 0; T → 0, the dc conductivity is inde-

pendent of the interaction. This argument is similar to the
one used by Prange and Kadanoff [30] for the electron-
phonon interaction. Recent calculations did not have access
to the linear response regime [21,23,24].
Figure 1 confirms the validity of the linear response

analysis. The initial slope of the J-E relation is inde-
pendent of the interaction strength U [26] both in (a)
one and (b) three dimensions. The linear behavior
deviates at the field Elin ≈ 0.003 in (a), orders of
magnitude smaller than the renormalized bandwidth
W� ¼ zW ≈ 0.5 with the equilibrium renormalization
factor z ¼ ½1 − Re∂Σr

UðωÞ=∂ω�−1ω¼E¼Tb¼0.
With an increasing E field, the contribution at E ¼ U=2

is a two-step resonant process which can be viewed as a
consequence of the energy overlap between the lower or
upper Hubbard bands of the left or right neighboring sites
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with the in-gap states present at the Fermi level [27]. The
current peak at E ¼ U is due to the direct overlap of the
Hubbard bands on neighboring sites [18,27].
The immediate departure from the linear conductivity at

very small fields can be well understood with a Joule
heating scenario in which the Coulombic interaction is the
dominant scattering process and is rapidly modified by an
increasing effective temperature as the field is increased.
First, we demonstrate this effective temperature effect by
showing, in Fig. 2(a), that the scattering rates from the
Coulomb interaction, τ−1U ¼ −ImΣr

Uðω ¼ 0Þ, for different
sets of the damping Γ, collapse onto a scaling curve as a
function of ðE=ΓÞ2 for small E. This scaling is clearly
evocative of the well-known T2 behavior of equilibrium
retarded self-energies.

In the noninteracting 1D chain with Tb ¼ 0, the effective
temperature has been obtained in the small field limit
as [15,17]

Teff ¼
ffiffiffi
6

p

π
γ
E
Γ
: ð8Þ

Inserting this Teff into the equilibrium perturbative self-
energy [31], we obtain, in the weak-U limit,

τ−1U ¼ −ImΣr
eqðω ¼ 0; TeffÞ ≈

π3

2
A0ð0Þ3U2T2

eff ; ð9Þ

which is represented by the dashed lines in Fig. 2(a). Here,
A0ð0Þ ¼ ðπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 þ 4γ2

p
Þ−1 is the noninteracting DOS at

ω ¼ 0. The robust agreement in the self-energies leaves no
doubt that the electron scattering is dominated by the Joule
heating with Teff given with Eq. (8) in the linear response
limit in the presence of interaction. Teff then deviates
strongly from this behavior outside the narrow linear
regime, as discussed below.
The scattering rate can be directly related to the electric

current via the Drude conductivity JðEÞ ¼ σdcðEÞE with
the nonlinear dc conductivity σdcðEÞ. In the noninteracting
limit, the linear conductivity can be written as σ0;dc ¼
2γ2=ðπΓ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 þ 4γ2

p
Þ [15]. In Fig. 2(b), we plot the Drude

formula with the scattering rate Γ replaced by the total
scattering Γtot ¼ Γþ τ−1U . The qualitative agreement with
the numerical results extends over a wide range of the E
field, well beyond the linear regime.
Using Eq. (9), the current at the small field can be

approximated as J ¼ σ0;dcE=ð1þ E2=E2
linÞ with the

departure from the linear behavior occurring around
(from the condition Γ ≈ τ−1U at E ¼ Elin), Elin ≈
ð8π2=3Þ1=2γ1=2Γ3=2=U. This estimate is valid away from
U ¼ 0 and the metal-insulator limit, and agrees well with
Fig. 2(b) [32]. We emphasize that, while negative-
differential-resistance (NDR) behaviors typically occur in
periodic structures due to the Bloch oscillations [33] as
shown by the dashed lines (U ¼ 0) in Fig. 1, the NDR here
comes from strong nonlinear scattering enhanced by the
Joule heating.
In the presence of weak dissipation and strong electronic

interactions, the nonequilibrium evolution becomes more
dramatic. With the effective temperature, Eq. (8), having a
singular limit as Γ → 0, the electron temperature tends to
rise very sharply as the field is applied. This effect, together
with a small value of the renormalized coherent energy
scales, causes the system to immediately deviate from the
linear response regime, preventing itself from overheating.
This mechanism, in a vicinity of a quantum phase tran-
sition, can strongly modify the state of a system. Indeed, we
will show that there is a region of the parameters U and E
for which the nonequilibrium Dyson’s equations have two
distinct solutions, one corresponding to an incoherent metal
and the other to an insulator.
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FIG. 2 (color online). (a) Interacting scattering rate,
τ−1U ¼ −ImΣr

Uðω ¼ 0Þ, plotted against ðE=ΓÞ2. Different colors
denote different damping Γ ¼ 0.0125;…; 0.06 with the interval
of 0.0025. For small (E=Γ), the numerical results on the 1D chain
collapse on well-defined lines at U ¼ 1 and 1.5. The dashed lines
are predictions based on the equilibrium self-energy with the
temperature replaced by the noninteracting effective temperature
Teff given in Eq. (8). The remarkable agreement proves that Joule
heating controls the scattering in the small field limit. (b)
Comparison of the current and the Drude formula estimate with
the total scattering rate Γþ τ−1U , with qualitative agreement
beyond the linear response limit.
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FIG. 1 (color online). Electric current (per spin) J vs electric
field E. (a) 1D chain with damping Γ ¼ 0.0625W and fermion
bath temperature Tb ¼ 0.001 25W with the 1D TB bandwidth
W ¼ 4γ. The linear conductance in the small field limit (magni-
fied in the inset) is the same for noninteracting (U ¼ 0) and
interacting (U ¼ 1.5W) models. After the conductivity deviates
from the linear response behavior, inelastic contributions appear
at E ¼ U=2 and E ¼ U. (b) 3D lattice with Γ ¼ 0.0083W and
Tb ¼ 0.000 42W with the 3D TB bandwidthW ¼ 12γ. The main
features remain similar to the 1D case. All following energies are
in units of W, unless otherwise mentioned.
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In Fig. 3(a), we start from a metallic state at U ¼ 1.225,
and increase the electric field from zero. We use the self-
consistent solution at a certain E field as an input to the next
E run. As discussed above, the system has an extremely
narrow linear response window with Elin ∼ 10−4, followed
by an NDR behavior. As the electric field is further
increased, an electric-field-driven metal-to-insulator RS
occurs at EMIT ≈ 0.004. Similar strong nonlinear I-V
behavior followed by a resistive transition has been
observed in NiO [7]. After gradual changes in the spectral
functions in Fig. 3(b), a finite insulating gap opens abruptly
after the RS. The local energy distribution function flocðωÞ,
defined as flocðωÞ ¼ − 1

2
ImG<ðωÞ=ImGrðωÞ, evolves from

the FD function at zero field to a shape with a high effective
temperature. At the RS, the Joule heating nearly stops and
the TB lattice goes back to the low temperature state [34].
We emphasize that the energy scale hierarchy

Elin ≪ EMIT ≪ W� ð10Þ

differs markedly from that in the quantum dot transport [35]
in which the dissipation occurs outside the quantum dot
region and the bias scale for decoherence is comparable to
the QP energy scale.
Figures 4(a) and 4(b) show the metal-insulator coexist-

ence. Our estimate of the threshold electric field EMIT ≈
0.004 at U ¼ 1.225 can be converted to EMIT ¼ 107 −
108 V=m if U ¼ 1–10 eV. Based on the balance between
the Joule heating and the dissipation [15,36], a scaling
argument [29] implies that the critical field decreases with
damping as EMIT ∝

ffiffiffi
Γ

p
. Therefore, accounting for the

range of experimental threshold fields would require Γ
on the order of 10−3 meV. We stress that the model

successfully captures, at a microscopic level, the qualitative
features of the resistive switching phenomenon, but a more
quantitative analysis calls for a better modeling of the
dissipative mechanisms.
While the phase diagram for the RS of Fig. 4(a) generally

reflects that of the equilibrium MIT [28] in (b), the upturn
of the upper critical E field (black line) in Fig. 4(a) with
increasing U is counterintuitive. This originates from an
interplay of different scaling regimes for large and small U
separated by the crossover line (dashed line) at about
Ucross=W ≈ 1.32. For small U < Ucross, the QP bandwidth
W� is larger than Teff , and the scaling relation Teff ∝ffiffiffiffiffiffiffiffiffiffi
E=U

p
[29] is obtained far from the linear regime, Eq. (8).

However, for U > Ucross with W� ≲ Teff , Teff increases
with E very weakly [29], as seen in Fig. 4(c). This slow
increase of Teff allows a larger critical field and leads to the
maximum EMITðUÞ near U ¼ Ucross—a prediction which
can be experimentally verified. The spectral and distribu-
tion functions in Fig. 4(d) for U > Ucross, show the QP
states with spectrally disconnected incoherent electrons,
and a strong nonthermal behavior even at E=W� ∼ 0.1. To
evaluate Teff , a fit to a Fermi-Dirac function with Teff has
been performed on data satisfying jflocðωÞ − 0.5j < 0.25.
Even though the calculations performed here are on

homogeneous lattices, the phase coexistence suggests
that, under a uniform field, the system can be spatially
segregated into metal and insulator regions which, in
turn, have inhomogeneous temperature distribution with
complex thermodynamic states. The hot metallic regions
will be oriented in the direction of the field, forming
experimentally observed current-carrying filaments.
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FIG. 3 (color online). (a) Electric-field-driven metal-to-insulator
transition (MIT) in the vicinity of a Mott-insulator at U ¼ 1.225,
Γ ¼ 0.00167 and Tb ¼ 0.0025 in a 3D cubic lattice with the
electric field in the x direction. The metallic state at zero field
becomes insulating at an electric field of magnitude orders of
magnitude smaller than bare energy scales. Depending on whether
the electric field is increased or decreased, metal-insulator hyste-
resis occurs with a window for phase-coexistence. (b) Spectral
function and distribution function flocðωÞ with an increasing
electric field. The quasiparticle (QP) spectral weight rapidly
disappears near the MIT driven by the electric field, opening an
insulating gap. The nonequilibrium energy distribution function
indicates that the system undergoes a highly nonmonotonic cold-
hot-cold temperature evolution near the MIT.
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field. (d) Spectral and distribution functions for strong U beyond
the crossover line [black dashed line in (c)]. Quasiparticle states
are disconnected from incoherent spectra and their statistical
property becomes strongly nonthermal.
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The Joule heating scenario has been previously invoked
in the literature for resistive switching in disordered films
[36]. Our calculations of the coexistence of two distinct
nonequilibrium steady-state solutions in the framework of a
relatively simple quantum mechanical model could be
applicable to NiO [7] and CrxV2−xO3 [37] systems where
metal-to-insulator transitions occur with increasing temper-
ature. Our calculation ignores long-range antiferromagnetic
correlations and does not address switching from ordered
insulating phases. Further extensions to cluster-DMFT
would allow a realistic treatment of the electronic structure
and could successfully address the case of VO2.

The authors are grateful for helpful discussions with
Satoshi Okamoto, Sambandamurthy Ganapathy, and Sujay
Singh. This work has been supported by the National
Science Foundation through Grants No. DMR-0907150,
No. DMR-115181, No. DMR-1308141, No. PHYS-
1066293, and by the hospitality of the Aspen Center for
Physics.

*jonghan@buffalo.edu
[1] L. P. Kadanoff and G. Baym, Quantum Statistical Mechan-

ics (Westview Press, New York, 1994).
[2] G. D. Mahan, Many-Particle Physics, Physics of Solids and

Liquids, 3rd ed. (Kluwer Academic, New York, 2000),
Chap. 8.

[3] V. Guiot, L. Cario, E. Janod, B. Corraze, V. Ta Phuoc, M.
Rozenberg, P. Stoliar, T. Cren, and D. Roditchev, Nat.
Commun. 4, 1722 (2013); P. Stoliar, L. Cario, E. Janod, B.
Corraze, C. Guillot-Deudon, S. Salmon-Bourmand, V.
Guiot, J. Tranchant, and M. Rozenberg, Adv. Mater. 25,
3222 (2013).

[4] R. Kumai, Y. Okimoto, and Y. Tokura, Science 284, 1645
(1999).

[5] J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant,
and S. S. P. Parkin, Science 339, 1402 (2013).

[6] S. Lee, A. Fursina, J. T. Mayo, C. T. Yavuz, V. L. Colvin,
R. G. Sumesh Sofin, I. V. Shvets, and D. Natelson, Nat.
Mater. 7, 130 (2007).

[7] S. B. Lee, S. C. Chae, S. H. Chang, J. S. Lee, S. Park, Y. Jo,
S. Seo, B. Kahng, and T.W. Noh, Appl. Phys. Lett. 93,
252102 (2008).

[8] J. Duchene, M. Terraillon, P. Pailly, and G. Adam, Appl.
Phys. Lett. 19, 115 (1971).

[9] T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, and D. N.
Basov, Appl. Phys. Lett. 95, 043503 (2009).

[10] A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, Siming
Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, Phys.
Rev. Lett. 110, 056601 (2013).

[11] T. Oka, R. Arita, and H. Aoki, Phys. Rev. Lett. 91, 066406
(2003); T. Oka and H. Aoki, Phys. Rev. B 81, 033103
(2010); T. Oka, Phys. Rev. B 86, 075148 (2012).

[12] V. Turkowski and J. K. Freericks, Phys. Rev. B 71, 085104
(2005).

[13] J. K. Freericks, Phys. Rev. B 77, 075109 (2008).
[14] J. E. Han, Phys. Rev. B 87, 085119 (2013).

[15] J. E. Han and J. Li, Phys. Rev. B 88, 075113 (2013).
[16] H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, and P.

Werner, Rev. Mod. Phys. 86, 779 (2014).
[17] A. Mitra and A. J. Millis, Phys. Rev. B 77, 220404(R)

(2008).
[18] A. V. Joura, J. K. Freericks, and Th. Pruschke, Phys. Rev.

Lett. 101, 196401 (2008).
[19] M. Eckstein, T. Oka, and P. Werner, Phys. Rev. Lett. 105,

146404 (2010).
[20] N. Sugimoto, S. Onoda, and N. Nagaosa, Phys. Rev. B 78,

155104 (2008).
[21] N. Tsuji, T. Oka, and H. Aoki, Phys. Rev. B 78, 235124

(2008).
[22] M. Mierzejewski, L. Vidmar, J. Bonca, and P. Prelovsek,

Phys. Rev. Lett. 106, 196401 (2011); L. Vidmar, J.
Bonca, T. Tohyama, and S. Maekawa, ibid. 107, 246404
(2011).

[23] C. Aron, G. Kotliar, and C. Weber, Phys. Rev. Lett. 108,
086401 (2012).

[24] A. Amaricci, C. Weber, M. Capone, and G. Kotliar, Phys.
Rev. B 86, 085110 (2012).

[25] Satoshi Okamoto, Phys. Rev. Lett. 101, 116807 (2008).
[26] G. Mazza, A. Amaricci, M. Capone, and M. Fabrizio, Phys.

Rev. B 91, 195124 (2015).
[27] C. Aron, Phys. Rev. B 86, 085127 (2012).
[28] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,

Rev. Mod. Phys. 68, 13 (1996).
[29] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.114.226403 for de-
tailed derivation of the Dyson equations and discussions
of scaling behaviors in resistive switching.

[30] R. E. Prange and L. P. Kadanoff, Phys. Rev. 134, A566
(1964).

[31] K. Yamada, Prog. Theor. Phys. 54, 316 (1975).
[32] In a more realistic model with impurity scattering

which becomes more effective than the dissipation at
small fields, the critical field has different behavior
Elin ∝ τ−1=2imp Γ=U.

[33] Paul A. Lebwohl and Raphael Tsu, J. Appl. Phys. 41, 2664
(1970).

[34] At the metal-to-insulator RS, the Teff cools as far as the
insulating state is allowed as a metastable solution in the
equilibrium phase diagram, Fig. 4(b). Therefore, the Teff at
the E field immediately after the upper switching field EMIT
maps to the red line in Fig. 4(b). After the RS to insulator,
the current, while reduced by orders of magnitude, self-
consistently produces the Joule heat enough to support the
insulating solution. See also Fig. 4(c).

[35] D. Goldhaber-Gordon, Hadas Shtrikman, D. Mahalu,
David Abusch-Magder, U. Meirav, and M. A. Kastner,
Nature (London) 391, 156 (1998); S. M. Cronenwett,
T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281,
540 (1998).

[36] B. L. Altshuler, V. E. Kravtsov, I. V. Lerner, and I. L.
Aleiner, Phys. Rev. Lett. 102, 176803 (2009).

[37] D. B. McWhan, A. Menth, J. P. Remeika, W. F. Brinkman,
and T. M. Rice, Phys. Rev. B 7, 1920 (1973); P. Hansmann,
A. Toschi, G. Sangiovanni, T. Saha-Dasgupta, S. Lupi,
M. Marsi, and K. Held, Phys. Status Solidi B 250, 1251
(2013).

PRL 114, 226403 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
5 JUNE 2015

226403-5

http://dx.doi.org/10.1038/ncomms2735
http://dx.doi.org/10.1038/ncomms2735
http://dx.doi.org/10.1002/adma.201301113
http://dx.doi.org/10.1002/adma.201301113
http://dx.doi.org/10.1126/science.284.5420.1645
http://dx.doi.org/10.1126/science.284.5420.1645
http://dx.doi.org/10.1126/science.1230512
http://dx.doi.org/10.1038/nmat2084
http://dx.doi.org/10.1038/nmat2084
http://dx.doi.org/10.1063/1.3050519
http://dx.doi.org/10.1063/1.3050519
http://dx.doi.org/10.1063/1.1653835
http://dx.doi.org/10.1063/1.1653835
http://dx.doi.org/10.1063/1.3187531
http://dx.doi.org/10.1103/PhysRevLett.110.056601
http://dx.doi.org/10.1103/PhysRevLett.110.056601
http://dx.doi.org/10.1103/PhysRevLett.91.066406
http://dx.doi.org/10.1103/PhysRevLett.91.066406
http://dx.doi.org/10.1103/PhysRevB.81.033103
http://dx.doi.org/10.1103/PhysRevB.81.033103
http://dx.doi.org/10.1103/PhysRevB.86.075148
http://dx.doi.org/10.1103/PhysRevB.71.085104
http://dx.doi.org/10.1103/PhysRevB.71.085104
http://dx.doi.org/10.1103/PhysRevB.77.075109
http://dx.doi.org/10.1103/PhysRevB.87.085119
http://dx.doi.org/10.1103/PhysRevB.88.075113
http://dx.doi.org/10.1103/RevModPhys.86.779
http://dx.doi.org/10.1103/PhysRevB.77.220404
http://dx.doi.org/10.1103/PhysRevB.77.220404
http://dx.doi.org/10.1103/PhysRevLett.101.196401
http://dx.doi.org/10.1103/PhysRevLett.101.196401
http://dx.doi.org/10.1103/PhysRevLett.105.146404
http://dx.doi.org/10.1103/PhysRevLett.105.146404
http://dx.doi.org/10.1103/PhysRevB.78.155104
http://dx.doi.org/10.1103/PhysRevB.78.155104
http://dx.doi.org/10.1103/PhysRevB.78.235124
http://dx.doi.org/10.1103/PhysRevB.78.235124
http://dx.doi.org/10.1103/PhysRevLett.106.196401
http://dx.doi.org/10.1103/PhysRevLett.107.246404
http://dx.doi.org/10.1103/PhysRevLett.107.246404
http://dx.doi.org/10.1103/PhysRevLett.108.086401
http://dx.doi.org/10.1103/PhysRevLett.108.086401
http://dx.doi.org/10.1103/PhysRevB.86.085110
http://dx.doi.org/10.1103/PhysRevB.86.085110
http://dx.doi.org/10.1103/PhysRevLett.101.116807
http://dx.doi.org/10.1103/PhysRevB.91.195124
http://dx.doi.org/10.1103/PhysRevB.91.195124
http://dx.doi.org/10.1103/PhysRevB.86.085127
http://dx.doi.org/10.1103/RevModPhys.68.13
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.226403
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.226403
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.226403
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.226403
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.226403
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.226403
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.226403
http://dx.doi.org/10.1103/PhysRev.134.A566
http://dx.doi.org/10.1103/PhysRev.134.A566
http://dx.doi.org/10.1143/PTP.54.316
http://dx.doi.org/10.1063/1.1659279
http://dx.doi.org/10.1063/1.1659279
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1126/science.281.5376.540
http://dx.doi.org/10.1126/science.281.5376.540
http://dx.doi.org/10.1103/PhysRevLett.102.176803
http://dx.doi.org/10.1103/PhysRevB.7.1920
http://dx.doi.org/10.1002/pssb.201248476
http://dx.doi.org/10.1002/pssb.201248476

