
Quantum Monte Carlo Calculations in Solids with Downfolded Hamiltonians

Fengjie Ma, Wirawan Purwanto, Shiwei Zhang, and Henry Krakauer
Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA

(Received 30 November 2014; published 1 June 2015)

We present a combination of a downfolding many-body approach with auxiliary-field quantum
Monte Carlo (AFQMC) calculations for extended systems. Many-body calculations operate on a simpler
Hamiltonian which retains material-specific properties. The Hamiltonian is systematically improvable and
allows one to dial, in principle, between the simplest model and the original Hamiltonian. As a by-product,
pseudopotential errors are essentially eliminated using frozen orbitals constructed adaptively from the solid
environment. The computational cost of the many-body calculation is dramatically reduced without
sacrificing accuracy. Excellent accuracy is achieved for a range of solids, including semiconductors, ionic
insulators, and metals. We apply the method to calculate the equation of state of cubic BN under ultrahigh
pressure, and determine the spin gap in NiO, a challenging prototypical material with strong electron
correlation effects.
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Developing accurate and efficient computational
approaches for quantum matter has been a long-standing
challenge. Parameter-free, material-specificmany-body cal-
culations are needed where simpler methods, such as those
based on density functional theory (DFT) [1] or perturbative
approaches, break down. Examples range from strongly
correlatedmaterials, such as transitionmetal oxides, to bond
stretching or bond breaking in otherwise moderately corre-
lated systems. Significant progress has beenmadewithwave
function based methods such as density matrix renormal-
ization group (DMRG) [2], coupled cluster [CCSD(T)], and
full configuration interaction quantum Monte Carlo
(FCIQMC) [3]. However, their computational cost tends
to scale steeply with system size. Quantum Monte Carlo
(QMC) calculation has become increasingly important in
this regard [4–12], although systematic and routine appli-
cations of QMC calculations in realistic materials still face
major challenges. Here we present an approach which
overcomes several of the obstacles with QMC calculations,
and advances the capabilities of nonperturbative ground-
state calculations in correlated materials in general.
Our approach leverages the accuracy, versatility,

and favorable scaling of the auxiliary-field quantum
Monte Carlo (AFQMC) method [5,13,14], and combines
it with downfolding, which is often employed to construct
reduced Hamiltonians from band structure calculations
for model studies [15,16]. A compact and systematic basis
set is obtained for the target periodic solids, including
magnetic systems, by truncating DFT orbitals. This allows
QMC calculations to be performed with a much simpler
Hamiltonian while retaining material-specific properties.
The simplification, often with drastic reduction in computa-
tional cost, can extend the reach of ab initio computations to
more complex materials. A large gain in statistical accuracy
often results as well, because of the smaller range of energy

scales (or many fewer degrees of freedom) which need to be
sampled stochastically in the downfolded Hamiltonian.
Two other key advantages follow as a result of this

approach. First, by varying the cutoff that controls the
truncation of the basis orbitals, one could in principle dial
between the original full-basis Hamiltonian and the sim-
plest model. QMC calculations can be performed at each
stage. This allows a systematically improvable set of
calculations that connect simple models to full materials
specificity. Second, the approach introduces a new way for
treating core electrons, which has been a critical issue in
QMC calculations. Significant errors are often present with
the use of pseudopotentials (PSPs) in QMC calculations
[17,18], due to (i) inherent limitations in the accuracy of
such PSPs (single-projector, generated in an atomic envi-
ronment, from independent-electron calculations) [19–21],
and (ii) approximations in how the PSP has to be imple-
mented in standard diffusion Monte Carlo (DMC) calcu-
lations [4,22]. A recent DMC study of high-pressure BN
showed [23] that all-electron calculations were required,
which in most materials would not be practical. In our
approach a frozen-core (FC) treatment [24] eliminates the
difficulty.
The most fundamental issue in computations of electron

correlation effects is accuracy. For QMC calculations, the
fermion sign problemmust, in all but a few special cases, be
controlled with an approximation. The AFQMC frame-
work, by carrying out the random walks in nonorthogonal
Slater determinant space, has shown to lead to an approxi-
mation which is more accurate and less dependent on the
trial wave function [5,7,12,21,25,26]. The method pro-
posed here provides an approach to seamlessly integrate
these advances in the study of solids. We illustrate the
approach by obtaining accurate equilibrium properties in a
range of solids, including semiconductors, ionic insulators,
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and metals. We then apply it to tackle two challenging
problems, the high pressure equation of state (EOS) of
cubic BN (pressure calibration) and accurate determination
of the spin gap in strongly correlated NiO.
The construction of the downfolded Hamiltonian begins

with a standard DFT calculation for the target system. This
is done using a plane wave basis with PSPs. (Arbitrarily
hard PSPs can be employed to eliminate transferability
errors of conventional norm-conserving PSPs [24], at little
additional computational cost in the ensuing many-body
calculations.) Plane waves are desirable at this stage,
because they provide an unbiased representation of the
many-body Hamiltonian. We then use the Kohn-Sham (KS)
orbitals as the basis set, tuned to eliminate less physically
relevant high-energy virtual states and low-energy core
states, as illustrated in Fig. 1(a). Expressed in this basis, the
effective downfolded Hamiltonian is given by

Ĥ ¼
X

i;j

Kijc
†
i cj þ

1

2

X

i;j;k;l

Vijklc
†
i c

†
jckcl: ð1Þ

The matrix elements of one-body (and constant) term K̂ and
two-body interaction term V̂ are

Kij ¼ hχijK̂jχji; Vijkl ¼ hχiχjjV̂jχkχli; ð2Þ
where jχii is a KS orbital, and the labels i, j, k, and l all run
in the truncated basis set. The matrix elements, which
encode the periodicity and the Coulomb interaction in the
underlying supercell [21], can be conveniently computed
using fast Fourier transforms, as the orbitals χ are given in
plane waves. The computational cost of evaluating these
matrix elements is negligible compared to the subsequent
many-body simulations. We use twist boundary conditions

[27] on the supercell. For inversion-symmetric systems, all
the matrix elements are real under any twist k. The core
states can be frozen in the corresponding KS orbitals of the
solid; two-body core-valence interactions appear as one-
body ion-valence terms in Kij and core-only interactions
(one-body and two-body) contribute a constant [24].
The downfolded Hamiltonian defined in Eq. (1) is then

treated using the phaseless AFQMC method [13] but in the
molecular formalism [14,28], which can handle any one-
particle basis functions. The approach is illustrated for fcc
Si in Fig. 1(b), which shows the convergence of the
calculated equilibrium lattice constant. Results are shown
for both Ne- and He-core PSPs [29]. With the Ne-core PSP,
each Si atom contributes four electrons, and there are no
“core electrons” in the diagram in Fig. 1(a). The basis cut
controls the number of KS orbitals in the truncated basis,
Nbasis. When all states are retained in the truncation, the KS
orbital basis is just a unitary transformation of the original
plane wave basis. As Nbasis is increased, the result con-
verges to the full plane wave AFQMC result. The statistical
error bar with the downfolded Hamiltonian is much
smaller, however, because many fewer auxiliary fields
need to be sampled [21,28]. With the He-core PSP, very
small radial cutoffs (0.54, 0.68, and 0.54 bohr for s, p, and
d channels, respectively) were used, which resulted in a
large plane wave cutoff Ecut ¼ 600 Ry. The 2s and 2p
electrons are then treated as “core electrons,” frozen in their
KS orbitals. As seen in Fig. 1(b), this approach (He-core
plus FC) eliminates the 1.2% error in the calculated lattice
constant from the Ne-core PSP. Furthermore, the calcu-
lation reaches convergence with ∼100 basis functions,
more than 2 orders of magnitude smaller than would be
required in the full plane wave calculation. We further
illustrate the downfolding procedure and its convergence in
the Supplemental Material with a detailed calculation of the
EOS for diamond [30].
The basis choice and truncation method are not unique.

Possible truncation choices include a fixed number of basis
functions, a fixed cutoff energy, a fixed ratio to the full basis,
etc. We find that the first choice leads to the most rapid
convergence in our EOS calculations. There is also consid-
erable freedom in the choice of underlying basis. In spin-
polarized systems, we generate a spin-consistent basis set by
diagonalizing the 2Nbasis × 2Nbasis overlap matrix formed by
hχσi jχσ0j i, where σ and σ0 are spin indices. The resulting
eigenfunctions corresponding to the largest Nbasis eigenval-
ues are used as new “KS orbitals,” which leads to an
unbiased basis set and much faster convergence, as illus-
trated for NiO below. Similarly, localization strategies could
be applied to generate more efficient basis sets [34–36].
We first apply the AFQMC downfolding approach to

two semiconductors Si and C, two metals Na and Al, an
ionic crystal NaCl, and BN, whose high-pressure EOS is
further studied below for pressure calibration. Figure 2
summarizes the calculated equilibrium properties and
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FIG. 1 (color online). (a) Illustration for basis downfolding.
Solid black lines represent DFT KS orbitals. A compact basis is
constructed with DFT-KS orbitals, by neglecting the less physi-
cally relevant high-energy states above a truncation energy. Deep
core electrons can be frozen at the mean-field level by a frozen-
core treatment. (b) Error in the calculated lattice constant in Si vs
basis size. Results with standard Ne-core and a highly accurate
He-core PSP plus FC are both shown. For the Ne-core PSP, the
full plane wave AFQMC result is indicated by the indigo open
circle. For the He-core PSP, the number of plane waves required
in the full calculation is indicated (note logarithmic scale).

PRL 114, 226401 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
5 JUNE 2015

226401-2



compares them with experiment [37]. The calculations for
NaCl and BN were analogous to those for Si and C. The
calculations in bcc Na and fcc Al used twist averaging over
90 random k points [27]. He-core PSPs were used for Na
and Al, together with the FC treatment as described for Si.
This makes a major difference in both NaCl and Na. With a
Ne-core PSP, the equilibrium volume is underestimated by
∼30% in Na, for example. The error is eliminated by the FC
approach, which allows the semicore 2s and 2p electrons to
fully relax in the target environment of the solid at the DFT
level, before freezing them in the corresponding KS orbitals
in the many-body calculation.
The agreement between the downfolding AFQMC cal-

culations and experiments [38,40–42] is excellent. For
reference, some representative DFT results are shown in
Fig. 2: the top panels in (a) and (b) include results from the
widely used local-density (LDA) and generalized gradient
(GGA,with two flavors, PBEand a variant which is specially
designed for solids and surfaces, PBEsol) approximations
[43–45]; the middle panels sample more recent develop-
ments in DFT, with a meta-GGA (TPSS) and two flavors
of hybrid functionals (HSE06 and HSEsol) [38,40–42],
which are highly accurate in many conventional systems
but often involve empirical parameters. The AFQMC
results (bottom panels) demonstrate that the new approach
provides an ab initio, parameter-free, many-body framework
that is consistently accurate. The calculations used single-
determinant trial wave functions taken directly from LDA or
GGA to control the sign or phase problem of the random
walks in Slater determinant space [5,13]. The systematic
error from this approximation, based on extensive prior
benchmarks [12,13,21,25], is expected to be essentially
negligible in these systems, in accord with the results in
the figure. The largest uncertainty arises in NaCl and is
statistical in nature. Different from the other systems, the
ionic character results in valence states localized on the Cl

atom. The high-energy virtual KS orbitals, which are used to
capture the effect of electron interactions, are free-electron-
like, however. As a result, convergence of the EOS is slow
and an extrapolation with respect to 1=Nbasis was needed to
reach the complete basis set limit, resulting in larger
uncertainty. Clearly, this can be improved by using
Wannier or other localized orbitals in the downfolding.
In a more demanding test, we apply the downfolding

AFQMC method to obtain the EOS of cubic BN for
pressures up to 900 GPa (V ∼ 0.5Veq). This system has
been identified as a promising material for an ultrahigh
pressure calibration scale [23,46]. A recent DMC study
stressed the need for all-electron (AE) calculations in order
to obtain reliable results at high pressures [23]. The
difficulty underscores the PSP transferability problem
discussed above in the context of Na and Si, and is
exacerbated by the need to apply a locality approximation
in DMC calculations to treat nonlocal PSPs [4,22]. The AE
treatment would be difficult to realize for heavier atoms.
Our calculations freeze the 1s electrons in their KS orbitals
in the supercell at each volume, using extremely hard
“zero-electron-core” PSPs for B and N in the downfolding
procedure [47]. In most cases ∼55 states/atom were used,
but larger Nbasis calculations were done at selected volumes
to extrapolate the EOS to the complete basis set limit. We
applied finite-temperature corrections following Ref. [23].
The calculations were done with k ¼ ð0.5; 0.5; 0.0Þ for
8- and 16-atom supercells, with one- and two-body finite-
size corrections as discussed earlier; we have confirmed that
residual errors are negligible compared to the final estimated
error band, especially in the high-pressure regime. As seen
in Fig. 3, the calculated EOS at low pressures is in excellent
agreement with experiments [39,48–50]. The calculated
equilibrium lattice constant, 6.820(3) bohr, is consistent
with experimental measurements of 6.802 bohr (zero-point
energy removed), as shown in the inset. The EOS at low
pressures shows small but discernible discrepancies with
DMC results. Possible origins include differences in the
finite-temperature corrections [51], or DMC fixed-node
errors, and will require further investigation. At high pres-
sures, the twoQMC results are in good agreement, providing
a consistent ab initio pressure calibration.
As a final application, we determine the spin gap

between the ferromagnetic (FM) state and the antiferro-
magnetic (AFM-II) ground state in NiO. Understanding
and predicting magnetic properties of transition-metal
oxides epitomizes the challenge of computations in quan-
tum matter. NiO is a prototypical system for strong electron
correlations. Many-body calculations of the spin gap have
been limited, and DFT-based methods have yielded widely
varying values [52]. We use Ne-core and He-core PSPs for
Ni and O, respectively. The downfolded Hamiltonian treats
the Ni 3s; 3p; 3d; 4s, and O 2s; 2p electrons. A rhombo-
hedral supercell with a lattice constant of 4.17 Å containing
two formula units is used. To reduce one-body finite-size
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FIG. 2 (color online). Summary of calculated equilibrium
volumes (a) and bulk moduli (b), shown as relative errors
from experiment. Selected DFT results are also shown for
reference. Zero-point effects have been subtracted from the
experiments [38,39].
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effects, we used twist averaging with a 4 × 4 × 4
Monkhorst-Pack grid [53]. (A recent study [3] by
FCIQMC and coupled-cluster methods, with calculations
at k ¼ Γ, obtained a gap value ∼0.96 eV.) One- and two-
body finite-size corrections [33] are then applied to the
many-body results. (Two-body finite-size effects are greatly
reduced by cancellation, because the two phases share the
same supercell.) The total CPU time required to obtain the
4 × 4 × 4 result in the largest basis set is∼0.48million Cray
XK6 (Titan) core hours. In the downfolding we use the spin-
consistent basis sets discussed earlier. In the inset in Fig. 4,
the variational gap value from the single-determinant trial
wave functions is shown vs the number of basis functions,
for both the spin-consistent basis set and one which uses
truncated KS orbitals of the majority spin. Both converge to
the same infinite basis-set limit, as expected, but the former
greatly accelerates convergence. Note that the variational
gap (which has been averaged over k points) is actually
negative; i.e., the trial wave functions identify the incorrect
phase for the ground state. The AFQMC calculations
correctly recover from these, and yield a final estimate of
the gap of 116(3) meV, in good agreement with experi-
ments [54,55].
In summary, we have presented an approach for extended

systems combining systematic downfolding Hamiltonians
with the AFQMC method. As a first test, parameter-free
calculations of equilibrium properties are demonstrated in
semiconductors, metals, and ionic insulators. QMC PSP
errors are eliminated without (prohibitive) all-electron
calculations, as demonstrated in BN. The spin gap in

strongly correlated NiO is accurately determined. The
approach drastically reduces complexity and computational
cost, and greatly extends the reach of ab initio, nonpertur-
bative, many-body computations in complex materials.
Furthermore, the framework provides a tunable connection
between the full materials-specific Hamiltonian and sim-
plified models. The downfolding approach can be general-
ized to carry out excited state andmany-body band structure
calculations, which was recently formulated [12] in the
plane wave AFQMC method. A large number of applica-
tions are possible within the present form. Further improve-
ments, for example by using localized virtual states or
optimizing the orbitalswith respect to the environments,will
lead to even more general and powerful approaches.
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