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We demonstrate optimal state estimation for a cavity optomechanical system through Kalman filtering.
By taking into account nontrivial experimental noise sources, such as colored laser noise and spurious
mechanical modes, we implement a realistic state-space model. This allows us to obtain the conditional
system state, i.e., conditioned on previous measurements, with a minimal least-squares estimation error.
We apply this method to estimate the mechanical state, as well as optomechanical correlations both in the
weak and strong coupling regime. The application of the Kalman filter is an important next step for
achieving real-time optimal (classical and quantum) control of cavity optomechanical systems.
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Introduction.—State estimation is a crucial task at the
heart of control theory, both in the classical [1] and
quantum domain [2]. For Gaussian systems, real-time state
estimation can be achieved in an optimal manner using
Kalman-Bucy filtering [3,4]. Since many physical systems
are approximately Gaussian, Kalman filtering has been
successfully implemented for a broad range of uses, for
example, for navigation and tracking in aeronautics
(including the Apollo project and the Global Positioning
System) [5], as well as in the physical sciences, such as for
suspension noise cancellation in gravitational wave detec-
tion [6], Heisenberg limited atomic magnetometry [7], or
quantum-enhanced optical-phase tracking [8—11]. In this
Letter, we introduce a new domain of applications by
implementing Kalman filtering for cavity optomechanical
systems. These systems represent a versatile light-matter
interface in which optomechanical interactions inside
optical or microwave cavities allow control over optical
and mechanical degrees of freedom. While the first inves-
tigations go back to the late 1960s in the context of
gravitational wave detectors [12,13], it is only the last
few years that have seen the development of a completely
new generation of micro- and nano-optomechanical solid-
state devices with fast-growing application areas from
classical sensing to quantum information processing [14].

State estimation of a cavity optomechanical system in
real time is key for optimal state control and verification.
The outstanding challenge is to obtain reliable information
on the mechanical subsystem. In optomechanics, this is
done through an optical cavity field, which imposes both
additional noise and dynamical backaction effects that have
to be taken into account. Until now, reconstructions of
the mechanical dynamics have focused either on statistical
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properties [15,16] or, for real-time reconstructions, on
regimes of sufficiently weak coupling and negligible
dynamical backaction effects [17-20]. The information
obtained from real-time estimation about the mechanical
quadratures can be used for active feedback control of
the mechanical resonator [19-21]. However, the validity of
these reconstruction schemes breaks down when either
coupling strength, dynamical backaction effects, or noise
become strong. Our Kalman-filtering approach overcomes
this limitation and allows us to demonstrate real-time
optimal state estimation for cavity optomechanical sys-
tems operating in arbitrary parameter regimes. From a
quantum physics perspective, the Kalman filter solves the
stochastic Schrodinger equation—a stochastic, nonlinear
generalization of the Schrodinger equation—which is the
canonical way to describe quantum systems subject to a
continuous measurement via coupling to electromagnetic
fields [2,22-24]. These concepts and their application to
mechanical systems have been the subject of extensive
theoretical research [25-29], but no experiments in the
context of cavity optomechanics have been conducted
so far.

Kalman filter.—In quantum theory, just as in classical
theories, a continuously observed system can be described
by a conditional state [2], i.e., a state that incorporates the
total amount of knowledge that an observer has extracted
from her set of measurements. Discarding this knowledge
yields the unconditional state, which is an incoherent
mixture of all possible conditional states. Our goal is to
find the (multipartite) conditional states of the full cavity
optomechanical system including mechanical and optical
subsystems. We restrict ourselves to Gaussian dynamics
and measurements, which is a valid assumption for the
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existing realizations of optomechanical systems [14].
For this case, it has been shown [30] that the problem of
finding the conditional state can be mapped to a classical
estimation problem, which is solved by a Kalman filter.
It produces a real-time state estimate from a continuous
measurement trajectory, which is optimal in the sense of
minimizing the mean-square estimation error. We describe
the system by the following (linear) state-space model

X, = AX; + W, (1a)
z, = Cx; + v, (1b)

where X, is a state vector in some appropriately chosen state
space (e.g., the phase space of a harmonic oscillator), z, is
the outcome of a linear measurement on the system, and w,
and v, describe process and measurement noise, respectively.
Both w, and v, are assumed to be zero-mean Gaussian white-
noise processes, which obey Re(E[w,w!]) = W§(t — s) and
Re(E[v,vI]) = V&(t — s), where § is the Dirac § function,
E[-] denotes the expectation value with respect to the initial
probability distribution describing system and noise, and
Re(-) the real part [31]. Process and measurement noise may
be correlated, which is described by the cross-correlations
Re(E[w,vl]) = M5(t — s). A, and C, are real, matrix-valued
functions that parametrize the state-space model and are
fixed by the physical model of the system and measurement
process. We aim to find the estimate X, of x, that minimizes
the mean-square estimation error E[||x, — %X,||*] at a time ¢
when taking into account the measurement results
{z,:0 < s <r}. This yields X, =E[x,[{z;:0<s <1}],
i.e., the conditional expectation value of x, given the full
measurement record. Evaluating this for system (1) yields
the time-continuous version of the Kalman filter [4]

§t =AX, +K,(z, - CX,), (2a)
P, =AP,+PAT +W - K, VKT, (2b)

where K, = (P,CT + M)V~! is the so-called Kalman gain,
and P, = Re(E[(x, — &,)(x, — %,)7]) is the estimation-error
covariance.

We can ascribe a quantum theoretical meaning to X, and
P, by associating x with the Schrodinger operators that
describe the quantum system, x, with the corresponding
Heisenberg operators that evolve under Eq. (la) (their
Heisenberg-Langevin equations), and z, with an operator-
valued output process [24,30]. If p, is the Gaussian state
conditioned on a continuous measurement of z,, we have
%, = tr{xp,} and P, =Re(tr{xxp,}) -,k ie., the
symmetrized covariance matrix of x, with respect to p.
In other words, the conditional Gaussian state p, is para-
metrized by X, and P, [32]. By averaging over all possible
trajectories of X,, we recover the unconditional state, whose
covariance matrix Re(E[x,x!]) we can extract from the
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FIG. 1 (color online). Kalman filter for cavity optomechanical
systems. (a) Working principle of the Kalman filter: (i) The
conditional state is depicted by the green phase-space ellipse,
which (ii) evolves in time according to the system dynamics.
(iii) After a time dt, a Bayesian update is applied based on the
measurement outcome to find the new conditional state. This
procedure minimizes the mean-square estimation error, which
makes the Kalman filter optimal for real-time state estimation.
(b) Schematic of the experiment: The optomechanical cavity is
driven by two laser beams each of which carry amplitude and
phase noise. The mechanical motion is typically driven by
Brownian noise. After their interaction with the cavity, the optical
fields are detected by two independent homodyne measurements
(signals z, and z,.), which themselves are subject to optical losses
and noise. Building an accurate Kalman filter requires appro-
priate modeling of all relevant noise sources.
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optical losses
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estimated data by noting that E[(x, — %,)%7]| = 0, and, thus,
Re(E[x,x!]) = P, + E[&,&]] [2,33].

The Kalman-filter equations (2) describe how the condi-
tional state is iteratively updated [Fig. 1(a)]. First, the
estimate X, and the covariance P, are propagated for an
infinitesimal time interval dt [the first term in Eq. (2a) and
the first three terms in Eq. (2b)] according to the state-space
model Eq. (1a). Second, the measurement outcome is
incorporated as a Bayesian update that corrects the value
of the estimate X, and contracts the covariance ellipse [last
terms in Eqgs. (2a) and (2b)]. The updated values are again
propagated by dt, and the procedure is repeated.

The model.—We consider a typical cavity optomechan-
ical architecture [Fig. 1(b)], in which a Fabry-Pérot cavity
(resonance frequency w,) coupled to a single mechanical
mode [34] is driven by two laser fields (at frequencies wy 4,
wy.). The “resonant” beam (w, = ,) acts as a weak probe
of the cavity length to stabilize the laser frequency with
respect to the cavity resonance; the “detuned” beam
(w; # w,) induces dynamical backaction effects, e.g., for
laser cooling. This captures all relevant scenarios applied
in typical optomechanics experiments. The mechanical
element has a resonance frequency w,, and energy damping
rate y,,. Both cavity modes exhibit decay at a (half width
at half maximum) rate x = k| + k,, where k; describes the
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input coupler, and k, accounts for spurious photon losses.
The system is described by the (linearized) quantum
Langevin equations [35-38]

i] = Wyp, (33)

P =—0,q—=Yup + Zg,-(cos 0;x; —sin6;y;) + &, (3b)

i=r,d

X = —Kkx; + Ay; + g;sin0;,q + /2x 61,
+ /260501 4+ 2,/K18p; + |ag 1| sin 0,4, (3¢)

Vi = —ky; — Aix; + g;cos 0;q + 2’<1y?,11

+ /2621 + | 5| cos 0. (3d)

where ¢, p ([q, p] = i) describe the position and momen-
tum of the mirror, and x;, y; with [x;,y,] = i6; for
I,k € {r,d}, respectively, denote the amplitude and the
phase quadrature of the cavity modes of the resonant
and detuned beam. The optomechanical coupling to the
cavity mode i is given by g; = v2go|ay;| with ay; =
/2K P;/hay ;[ (k + iA;), where g, is the single-photon
coupling strength, P; is the corresponding driving laser
power, and A; = wy; — . is the detuning of the respective
driving laser (at g ;) with respect to the cavity resonance
frequency (@,.). The coupling of the mechanics to a thermal
bath is modeled by a self-adjoint noise term & with
(E(DE(s) + E()ED) = 27,20+ Dot —5) and 7~
kgT/hw,, (the mean occupation number of the bath at
temperature T). Optical shot noise is denoted by xi, yir
with variances (xi(1)xi(s)) = (yI"(¢)y"(s)) =568;;6(1 —s).
Terms proportional to §f; and (,25,» describe the classical
amplitude and phase noise of the driving lasers [36-38].

Homodyne detection is used to independently measure
the generalized quadratures z; of the reflected optical
modes [Fig. 1(b)]. The cavity input-output relations yield

7 = (v/2x,x; + X" + 5B;) cos @,
+ (v/2k1y; + y) sing;, (4)

where 8f3; describes classical amplitude noise. We model
optical losses and inefficient detection as beam-splitter
losses parametrized by 5. The measured quantities are
rescaled to z; = /T =75z} + \/nzl", where z" describes
additional quantum noise independent of x" and yn,

ie., (x"(r)z"(s)) = (y"(1)z'(s)) = 0. Defining the vec-

tors X, = [q(t), p(1). x4(1). ya(t). x,(t).y,(1)]" and z, =
[z4(1),z,(1)], Egs. (3) and (4) can be rewritten in the
compact form (1).

Contrary to the idealizing assumptions made above,
many of the noise sources in an actual experiment are
frequency dependent, here the laser amplitude and phase

noise. This needs to be taken into account by properly
extending the state-space model. We incorporate three
types of laser noise: (i) broadband laser noise originating
from the laser itself, (ii) narrow-band Pound-Drever-Hall
phase modulation in the resonant beam required for locking
the laser to the cavity frequency, and (iii) narrow-band laser
noise originating from the feedback loop of the laser lock.
Each of these noise sources is experimentally characterized
and is modeled independently to match the overall spectral
characteristics [39]. Furthermore, we extend the state-space
model to incorporate higher-order mechanical modes.
Measurements and innovations.—We use the recorded
homodyne signals z; as input to the Kalman filter for
estimation of the optomechanical state, which is done off-
line. Figure 2 shows a 2 yus trace of the detector signals
(corresponding to 100 sample points), along with the
optimal measurement prediction. The prediction shows
excellent qualitative agreement with the measured data
both in the weak (g, < «x) and strong coupling regime
(g4 > ). Quantitatively, the validity of the estimation is
assessed by the innovation sequence v, = z, — C,X,, i.e.,

weak coupling (g4=0.2 K) strong coupling (g4=1.68 K)
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FIG. 2 (color online). Measurement signals and Kalman-filter
predictions. Shown are the measurement signals of the two
homodyne detections of the detuned and resonant beam, z,(¢)
(red dots) and z,(¢) (blue dots), respectively, and their Kalman-
filter predictions Z;(7) (gray line) both for the weak (left) and the
strong coupling regime (right). Error bars of the prediction
(£20) are indicated by the width of the gray line. Kalman-filter
innovations v;(r) = z;(r) — 2;() are plotted below each data set
and demonstrate the accuracy of the implemented filter. To assess
the performance of the filter, we calculate the fraction of
normalized innovations that are contained in a two-sided 95%
confidence region (£2¢ indicated by the lines) of a zero-mean
Gaussian distribution (beside each plot). The experiment was
performed at room temperature with a micromechanical oscillator
of w,, =27 x 1.278 MHz, y,, = 2z x 265 Hz, and optomechan-
ical parameters k = 0.34w,,, gy = 2z x 7.7 Hz [39]. For both
coupling strengths of the detuned beam (A, = ®,,), we use
ps~0, A, =0, g, =02k, and ¢, = n/2. Note that the fast
oscillation of z,(¢), which is due to the 20 MHz Pound-Drever-
Hall phase modulation for frequency locking, is taken into
account by the Kalman filter.
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FIG. 3 (color online). Estimating optomechanical quadratures.
(a) Shown are Kalman-filter real-time estimates for the optical
amplitude (X;, straight line) and phase (;, dashed line) quadrature
of the detuned (red, top) and resonant (blue, middle) beam along
with the mechanical position (g, straight green line) and momen-
tum quadrature (p, dashed green line) of the optomechanical
system for the weak and strong coupling regime. The mechanical
[(b), green line] and optomechanical [(c), gray line] phase-space
trajectories are estimated over a period of 100 us. A histogram
along each quadrature is shown as a side panel and estimated over
10 ms. The uncertainty ellipse of the unconditional (conditional)
state is shown as dashed (straight) line. Note that the length of the
shown trajectory is not sufficient to adequately represent the state’s
statistics. All units are given in terms of quadrature zero-point
fluctuations (zpf). For our experimental parameters ¢, =

2.73 %1071 m, p,r = 3.87 x 107" kgm/s.

the difference between the predicted measurement zZ, =
C,X, of the Kalman filter and the actual measurement
outcome z,. For an optimally working filter, v, must be a
Gaussian zero-mean white-noise process with a variance
given by E[v!| = C,P,CT + V. We use this fact to fine-
tune model parameters starting from their independently
determined values. The statistics of v, of the resulting
Kalman filter closely matches these criteria, hence, dem-
onstrating the accuracy of the filter (Fig. 2; see, also,
Ref. [39] for further statistical analysis).

Estimation of optomechanical quadratures.—Kalman
filtering provides direct, real-time access both to the optical
intracavity quadratures and to the mechanical degree of
freedom in a cavity optomechanical system [Fig. 3(a)]. In the
weak coupling regime, the thermally driven mechanical
motion and its coupling to the optical intracavity fields is
visible. Clearly, the mechanical motion modulates both

quadratures x4, v, of the detuned beam [14], which couples
to the mirror via the optomechanical beam-splitter interac-
tion. The situation is different for the resonant beam, whose
amplitude quadrature x, contains shot noise only, while its
phase quadrature y, couples to the mechanical position.

The phase-space representation captures the essence of
Kalman filtering. The estimated mechanical quadratures
rotate in phase space [Fig. 3(b)]. Their probability distri-
bution along each mechanical quadrature is shown as
histograms beside each axis and demonstrates the
Gaussian nature of the micromirror motion. We compare
the uncertainty ellipse of the unconditional (dashed line)
and conditional (solid line) mechanical state, i.e., the area in
which we expect with 95% probability to find the mechani-
cal quadratures. For a purely thermal state, the area of the
unconditional ellipse is proportional to the thermal occu-
pation number 7. In the weak coupling regime, the
information provided by the measurement update leads
to a clear reduction in the uncertainty (a factor of 27 in
effective temperature), which is the optimal one for the
given coupling strength [52]. In the strong coupling regime,
laser cooling has already significantly diminished the
thermally induced uncertainty of the unconditional state.
In addition, the cavity dynamics introduces a notable
ellipticity in the phase-space distribution [53]. The condi-
tional state uncertainty is similar to the weak coupling
situation. This is because for technical reasons the signal
power at the homodyne detectors was kept constant for
both coupling strengths, which means that the stronger
detuned optical drive beam does not provide more infor-
mation on the system state.

Figure 3(c) shows real-time estimates of the optome-
chanical correlations between mechanical position and the
phase quadrature of the resonant beam. Analogous to the
mechanical phase space, the conditional state uncertainties
are strongly reduced, reflecting the real-time information
gain on the optomechanical correlations.

Conclusion.—We have successfully implemented
Kalman filtering for optimal state estimation of cavity
optomechanical systems. Its accuracy crucially relies on
an accurate state-space model of the specific experiment.
The applications of this method in the domain of opto-
mechanics are manifold. For example, Kalman filtering
enables mechanical feedback control in the quantum regime.
While in this work we operate the filter off-line, its real-time
application in the frequency range investigated here is
feasible using current field programmable gate array hard-
ware [39]. The optimality of the filter guarantees that the
reduction in conditional state uncertainty corresponds to the
maximal cooling one can achieve through active feedback at
this specific coupling strength. As a consequence, ground-
state cooling is readily achievable by combining Kalman
filtering with measurements in the strong cooperativity
regime [33]. This regime has been reached in current
experiments [21,54-56]. In our case, it requires cryogenic
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cooling of the mechanical environment to 300 mK and
quality factors above 10°. As another example, mechanical
sensing requires precise knowledge of the system dynamics
in the absence of the external impetus, which is equivalent to
the task of implementing the optimal estimator, i.e., the
Kalman filter. The same is true for the task of characterizing
or reconstructing an optomechanical quantum state (for
example, in terms of entanglement), where the relevant
information is often encoded in the covariance matrix P,.
One fascinating prospect there is the generation of entan-
glement of macroscopic test masses through measurement
[29,57]. In summary, Kalman filtering adds a significant
performance advantage for classical and quantum control of
cavity optomechanical systems.

We thank Gerald Matz and Martin Siegele for discus-
sions and Simon Groblacher for support with microfabri-
cation. We acknowledge support by the FEuropean
Commission (SIQS, iQOEMS, ITN cQOM, ThermiQ),
the European Research Council (ERC QOM), the
Austrian  Science Fund (FWF) Projects No. Y414
(START) and No. F40 (SFB FOQUS), the Vienna
Science and Technology Fund (WWTF) under Project
No. ICT12-049, and the Centre for Quantum
Engineering and Space-Time Research (QUEST). W. W.
acknowledges support by a Feodor Lynen fellowship of the
Alexander von Humboldt Foundation and a Marie-Curie
IEF of the European Commission. S. G. H.,J. H. O., and R.
R. are supported by the Austrian Science Fund (FWF)
Project No. W1210 (CoQuS). Computations have been
conducted in parts on the Vienna Scientific Cluster.

“witlef.wieczorek @univie.ac.at
“sebastian.hofer@univie.ac.at
j[jason.hoelscher—obermaier@univie.ac.at

[1] R.E. Stengel, Optimal Control and Estimation (Dover
Publications, Mineola, NY, 1994).

[2] H. Wiseman and G. J. Milburn, Quantum Measurement and
Control (Cambridge University Press, Cambridge, England,
2010).

[3] R.E. Kalman, A new approach to linear filtering and
prediction problems, J. Fluids Eng. 82, 35 (1960).

[4] R.E. Kalman and R. S. Bucy, New results in linear filtering
and prediction theory, J. Fluids Eng. 83, 95 (1961).

[5] M. S. Grewal and A.P. Andrews, Applications of Kalman
filtering in aerospace 1960 to the present [historical per-
spectives], IEEE Control Syst. Mag. 30, 69 (2010).

[6] L.S. Finn and S. Mukherjee, Data conditioning for gravi-
tational wave detectors: A Kalman filter for regressing
suspension violin modes, Phys. Rev. D 63, 062004 (2001).

[7]1 .M. Geremia, J.K. Stockton, A.C. Doherty, and H.
Mabuchi, Quantum Kalman Filtering and the Heisenberg
Limit in Atomic Magnetometry, Phys. Rev. Lett. 91, 250801
(2003).

[8] H. Yonezawa, D. Nakane, T. A. Wheatley, K. Iwasawa,
S. Takeda, H. Arao, K. Ohki, K. Tsumura, D. W. Berry,

T.C. Ralph, H.M. Wiseman, E.H. Huntington, and
A. Furusawa, Quantum-enhanced optical-phase tracking,
Science 337, 1514 (2012).

[9] M. Tsang, Time-Symmetric Quantum Theory of Smooth-
ing, Phys. Rev. Lett. 102, 250403 (2009).

[10] M. Tsang, J. H. Shapiro, and S. Lloyd, Quantum theory of
optical temporal phase and instantaneous frequency. II.
Continuous-time limit and state-variable approach to
phase-locked loop design, Phys. Rev. A 79, 053843 (2009).

[11] T. A. Wheatley, D. W. Berry, H. Yonezawa, D. Nakane, H.
Arao, D. T. Pope, T. C. Ralph, H. M. Wiseman, A. Furusawa,
and E.H. Huntington, Adaptive Optical Phase Estimation
Using Time-Symmetric Quantum Smoothing, Phys. Rev.
Lett. 104, 093601 (2010).

[12] V.B. Braginsky and A. B. Manukin, Ponderomotive effects
of electromagnetic radiation, Sov. Phys. JETP 25, 653
(1967).

[13] V.B. Braginsky and F.Y. Khalili, Quantum Measurement
(Cambridge University Press, Cambridge, England, 1995).

[14] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[15] M. Paternostro, S. Gigan, M. S. Kim, F. Blaser, H. R. Bohm,
and M. Aspelmeyer, Reconstructing the dynamics of a
movable mirror in a detuned optical cavity, New J. Phys.
8, 107 (2006).

[16] T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds,
and K. W. Lehnert, Coherent state transfer between itinerant
microwave fields and a mechanical oscillator, Nature
(London) 495, 210 (2013).

[17] D. Rugar and P. Griitter, Mechanical Parametric Amplifi-
cation and Thermomechanical Noise Squeezing, Phys. Rev.
Lett. 67, 699 (1991).

[18] Y. Hadjar, P. F. Cohadon, C. G. Aminoff, M. Pinard, and
A. Heidmann, High-sensitivity optical measurement of
mechanical Brownian motion, Europhys. Lett. 47, 545
(1999).

[19] T. Briant, P.-F. Cohadon, M. Pinard, and A. Heidmann,
Optical phase-space reconstruction of mirror motion at the
attometer level, Eur. Phys. J. D 22, 131 (2003).

[20] K. Iwasawa, K. Makino, H. Yonezawa, M. Tsang, A.
Davidovic, E. Huntington, and A. Furusawa, Quantum-
Limited Mirror-Motion Estimation, Phys. Rev. Lett. 111,
163602 (2013).

[21] D.J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi,
and T.J. Kippenberg, Measurement and control of a
mechanical oscillator at its thermal decoherence rate,
arXiv:1410.6191v2.

[22] H. Carmichael, An Open Systems Approach to Quantum
Optics (Springer-Verlag, Berlin, 1993).

[23] C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed.
(Springer, New York, 2004).

[24] L. Bouten, R. Van Handel, and M. R. James, An introduc-
tion to quantum filtering, SIAM J. Control Optim. 46, 2199
(2007).

[25] S. Mancini, D. Vitali, and P. Tombesi, Optomechanical
Cooling of a Macroscopic Oscillator by Homodyne Feed-
back, Phys. Rev. Lett. 80, 688 (1998).

[26] A.C. Doherty and K. Jacobs, Feedback control of quantum
systems using continuous state estimation, Phys. Rev. A 60,
2700 (1999).

223601-5


http://dx.doi.org/10.1109/MCS.2010.936465
http://dx.doi.org/10.1103/PhysRevD.63.062004
http://dx.doi.org/10.1103/PhysRevLett.91.250801
http://dx.doi.org/10.1103/PhysRevLett.91.250801
http://dx.doi.org/10.1126/science.1225258
http://dx.doi.org/10.1103/PhysRevLett.102.250403
http://dx.doi.org/10.1103/PhysRevA.79.053843
http://dx.doi.org/10.1103/PhysRevLett.104.093601
http://dx.doi.org/10.1103/PhysRevLett.104.093601
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1088/1367-2630/8/6/107
http://dx.doi.org/10.1088/1367-2630/8/6/107
http://dx.doi.org/10.1038/nature11915
http://dx.doi.org/10.1038/nature11915
http://dx.doi.org/10.1103/PhysRevLett.67.699
http://dx.doi.org/10.1103/PhysRevLett.67.699
http://dx.doi.org/10.1209/epl/i1999-00422-6
http://dx.doi.org/10.1209/epl/i1999-00422-6
http://dx.doi.org/10.1140/epjd/e2002-00217-9
http://dx.doi.org/10.1103/PhysRevLett.111.163602
http://dx.doi.org/10.1103/PhysRevLett.111.163602
http://arXiv.org/abs/1410.6191v2
http://dx.doi.org/10.1137/060651239
http://dx.doi.org/10.1137/060651239
http://dx.doi.org/10.1103/PhysRevLett.80.688
http://dx.doi.org/10.1103/PhysRevA.60.2700
http://dx.doi.org/10.1103/PhysRevA.60.2700

PRL 114, 223601 (2015)

PHYSICAL REVIEW LETTERS

week ending
5 JUNE 2015

[27] A. Hopkins, K. Jacobs, S. Habib, and K. Schwab, Feedback
cooling of a nanomechanical resonator, Phys. Rev. B 68,
235328 (2003).

[28] S. Danilishin, H. Miiller-Ebhardt, H. Rehbein, K. Somiya,
R. Schnabel, K. Danzmann, T. Corbitt, C. Wipf, N.
Mavalvala, and Y. Chen, Creation of a quantum oscillator
by classical control, arXiv:0809.2024.

[29] H. Miiller-Ebhardt, H. Rehbein, C. Li, Y. Mino, K. Somiya,
R. Schnabel, K. Danzmann, and Y. Chen, Quantum-state
preparation and macroscopic entanglement in gravitational-
wave detectors, Phys. Rev. A 80, 043802 (2009).

[30] V.P. Belavkin, Optimal filtering of Markov signals with
quantum white noise, Radio Eng. Electron. Phys. (USSR)
25, 1445 (1980).

[31] Taking the real part of the covariance matrices that describes
the noise processes is only necessary for quantum processes
due to their noncommutative nature. Although it is not
necessary for classical systems, we choose this explicitly
real form for the sake of a consistent presentation.

[32] One can also adopt a quantum-optical interpretation of X,.
Formally integrating (and assuming vanishing initial con-
ditions) gives X, = f ! K(t,s)z,ds with an integral kernel
K depending on A,, C,, and K,. Thus, X, is formally
equivalent to a (unnormalized) bosonic mode extracted
from the output process z,. In a quantum-optical setting,
this could be, for example, a temporal light mode extracted
from the output light of a cavity.

[33] S.G. Hofer and K. Hammerer, Entanglement-enhanced
time-continuous quantum control in optomechanics, Phys.
Rev. A 91, 033822 (2015).

[34] The generalization to several mechanical modes is straight-
forward, and, in fact, it is included in the full model of our
system.

[35] V. Giovannetti and D. Vitali, Phase-noise measurement in a
cavity with a movable mirror undergoing quantum Brow-
nian motion, Phys. Rev. A 63, 023812 (2001).

[36] P. Rabl, C. Genes, K. Hammerer, and M. Aspelmeyer,
Phase-noise induced limitations on cooling and coherent
evolution in optomechanical systems, Phys. Rev. A 80,
063819 (2009).

[37] M. Abdi, Sh. Barzanjeh, P. Tombesi, and D. Vitali, Effect of
phase noise on the generation of stationary entanglement in
cavity optomechanics, Phys. Rev. A 84, 032325 (2011).

[38] R. Ghobadi, A.R. Bahrampour, and C. Simon, Optome-
chanical entanglement in the presence of laser phase noise,
Phys. Rev. A 84, 063827 (2011).

[39] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.114.223601, for details
on the state space model implementation of our experi-
ment, the statistical analysis of the innovation sequence
and the feasibility of real-time feedback. It contains
Refs. [37,40-51].

[40] Y. Bar-Shalom, X. Rong Li, and T. Kirubarajan, Estimation
with Applications to Tracking and Navigation: Theory Algo-
rithms and Software (John Wiley & Sons, New York, 2001).

[41] F. van der Heijden, R. Duin, D. de Ridder, and D. M. J. Tax,
Classification, Parameter Estimation and State Estimation:
An Engineering Approach Using MATLAB (John Wiley &
Sons, New York, 2005).

[42] R. F. Stengel, Optimal Control and Estimation, reissue ed.
(Dover Publications, New York, 1994).

[43] A.A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and
R.J. Schoelkopf, Introduction to quantum noise, measure-
ment, and amplification, Rev. Mod. Phys. 82, 1155 (2010).

[44] D. W.C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N.
Brahms, and D.M. Stamper-Kurn, Non-classical light
generated by quantum-noise-driven cavity optomechanics,
Nature (London) 488, 476 (2012).

[45] A.H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M.
Aspelmeyer, and O. Painter, Squeezed light from a silicon
micromechanical resonator, Nature (London) 500, 185
(2013).

[46] T.P. Purdy, P-L. Yu, R. W. Peterson, N.S. Kampel, and
C. A. Regal, Strong Optomechanical Squeezing of Light,
Phys. Rev. X 3, 031012 (2013).

[47] R. Riedinger, Master’s thesis, Philipps University Marburg,
2013.

[48] J. Gough and M.R. James, The series product and its
application to quantum feedforward and feedback networks,
IEEE Trans. Autom. Control 54, 2530 (2009).

[49] H. Nurdin, M. James, and A. Doherty, Network synthesis of
linear dynamical quantum stochastic systems, SIAM 1J.
Control Optim. 48, 2686 (2009).

[50] U. Leonhardt, Quantum statistics of a lossless beam splitter:
SU(2) symmetry in phase space, Phys. Rev. A 48, 3265
(1993).

[51] A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Groblacher, H.
Miao, Y. Chen, M. Aspelmeyer, and O. Painter, Laser noise
in cavity-optomechanical cooling and thermometry, New J.
Phys. 15, 035007 (2013).

[52] Recall that the optimality of the Kalman filter ensures that
the conditional state uncertainty is minimized for a given
coupling strength.

[53] C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M.
Aspelmeyer, Ground-state cooling of a micromechanical
oscillator: Comparing cold damping and cavity-assisted
cooling schemes, Phys. Rev. A 77, 033804 (2008).

[54] F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Cavity
optomechanics with a Bose-Einstein condensate, Science
322, 235 (2008).

[55] K.W. Murch, K.L. Moore, S. Gupta, and D.M.
Stamper-Kurn, Observation of quantum-measurement back-
action with an ultracold atomic gas, Nat. Phys. 4, 561
(2008).

[56] T.P. Purdy, R. W. Peterson, and C. A. Regal, Observation of
radiation pressure shot noise on a macroscopic object,
Science 339, 801 (2013).

[57] H. Miiller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann,
and Y. Chen, Entanglement of Macroscopic Test Masses and
the Standard Quantum Limit in Laser Interferometry, Phys.
Rev. Lett. 100, 013601 (2008).

223601-6


http://dx.doi.org/10.1103/PhysRevB.68.235328
http://dx.doi.org/10.1103/PhysRevB.68.235328
http://arXiv.org/abs/0809.2024
http://dx.doi.org/10.1103/PhysRevA.80.043802
http://dx.doi.org/10.1103/PhysRevA.91.033822
http://dx.doi.org/10.1103/PhysRevA.91.033822
http://dx.doi.org/10.1103/PhysRevA.63.023812
http://dx.doi.org/10.1103/PhysRevA.80.063819
http://dx.doi.org/10.1103/PhysRevA.80.063819
http://dx.doi.org/10.1103/PhysRevA.84.032325
http://dx.doi.org/10.1103/PhysRevA.84.063827
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.223601
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.223601
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.223601
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.223601
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.223601
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.223601
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.223601
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1038/nature11325
http://dx.doi.org/10.1038/nature12307
http://dx.doi.org/10.1038/nature12307
http://dx.doi.org/10.1103/PhysRevX.3.031012
http://dx.doi.org/10.1109/TAC.2009.2031205
http://dx.doi.org/10.1137/080728652
http://dx.doi.org/10.1137/080728652
http://dx.doi.org/10.1103/PhysRevA.48.3265
http://dx.doi.org/10.1103/PhysRevA.48.3265
http://dx.doi.org/10.1088/1367-2630/15/3/035007
http://dx.doi.org/10.1088/1367-2630/15/3/035007
http://dx.doi.org/10.1103/PhysRevA.77.033804
http://dx.doi.org/10.1126/science.1163218
http://dx.doi.org/10.1126/science.1163218
http://dx.doi.org/10.1038/nphys965
http://dx.doi.org/10.1038/nphys965
http://dx.doi.org/10.1126/science.1231282
http://dx.doi.org/10.1103/PhysRevLett.100.013601
http://dx.doi.org/10.1103/PhysRevLett.100.013601

