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We derive scalar effective field theories—Lagrangians, symmetries, and all—from on-shell scattering
amplitudes constructed purely from Lorentz invariance, factorization, a fixed power counting order in
derivatives, and a fixed order at which amplitudes vanish in the soft limit. These constraints leave free
parameters in the amplitude which are the coupling constants of well-known theories: Nambu-Goldstone
bosons, Dirac-Born-Infeld scalars, and Galilean internal shift symmetries. Moreover, soft limits imply
conditions on the Noether current which can then be inverted to derive Lagrangians for each theory. We
propose a natural classification of all scalar effective field theories according to two numbers which encode
the derivative power counting and soft behavior of the corresponding amplitudes. In those cases where
there is no consistent amplitude, the corresponding theory does not exist.
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Introduction.—Infrared dynamics are inextricably linked
to symmetry. For example, soft limits in gauge and gravity
theories are fixed by conservation laws [1], while soft limits
of pion amplitudes secretly encode underlying patterns of
symmetry breaking [2]. Tacitly, symmetries are considered
primary and the corresponding soft theorems secondary.
In this letter we argue for precisely the opposite: by
constructing scattering amplitudes directly and imposing
various soft behaviors, we instead derive the theories and
their symmetries.
The idea of building a theory from its scattering

amplitudes rather than its Lagrangian is not new.
Famously, tree amplitudes in gauge and gravity theories
can be constructed solely from considerations of Lorentz
invariance and factorization. The same is true of nonlinear
σ models [3], albeit with the crucial and additional
assumption of the so-called Adler zero [4], which describes
the vanishing of pion scattering amplitudes in the soft limit.
The present work is a generalization of this prescription

with the aim of enumerating all possible effective field
theories of a massless scalar. We focus here on on-shell tree
amplitudes in four dimensions, but our methods apply to
diverse dimensions and loop integrands. In the soft limit of
an external leg, p → 0, the tree amplitude is

AðpÞ ¼ OðpσÞ; ð1Þ

where σ is a non-negative integer characterizing the soft
limit degree. Larger values of σ imply cancellations in
the amplitude enforced by relations among the coupling
constants of the underlying theory, i.e., more symmetry.
A massless scalar has the schematic Lagrangian

L ¼ ð∂ϕÞ2 X∞
m;n¼0

λm;n∂mϕn; ð2Þ

where m is even by Lorentz invariance [5]. In general, the
soft limit will enforce cancellations among diagrams of
different topologies. For example, an nþ 2 particle ampli-
tude includes diagrams with a single λm;n vertex as well as
diagrams with a single propagator connecting a λm0;n0 vertex
to a λm00;n00 vertex. By dimensional analysis, cancellations
can only occur if m ¼ m0 þm00 and n ¼ n0 þ n00, corre-
sponding to all λm;n’s for which

ρ ¼ m=n; ð3Þ
for a fixed non-negative rational number ρ characterizing
a particular power counting order in derivatives. For fixed
ρ, Eq. (2) takes the schematic form

LðρÞ ¼ ð∂ϕÞ2Fð∂mϕnÞ; ð4Þ

for a general function F, where m and n are the smallest
numbers satisfying Eq. (3). Some familiar examples are

Lð0Þ ¼ ð∂ϕÞ2FðϕÞ; Lð1Þ ¼ ð∂ϕÞ2Fð∂ϕÞ; ð5Þ

corresponding to theories of free fields and Nambu-
Goldstone bosons, respectively.
For a theory LðρÞ we can impose the soft limit in Eq. (1)

to constrain F, yielding a new theory Lðρ;σÞ. Thus, all scalar
effective theories can be classified by two numbers, (ρ; σ),
which specify the derivative power counting of a theory
together with the degree of its soft limits. With an explicit
Lagrangian, it is straightforward to compute the scattering
amplitude and its soft limit, but a more interesting exercise
is the reverse: assume a value of (ρ; σ) and derive the
corresponding theory.
To begin, we construct general Ansätze for on-shell tree

amplitudes consistent with Lorentz invariance and factori-
zation but restricted to a particular (ρ; σ) derivative power
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counting and soft limit. This generates the span of all
possible amplitudes describing massless scalars. For many
values of (ρ; σ) there is no consistent scattering amplitude,
so there is no corresponding theory. Even if a consistent
amplitude exists, however, this may not be so interesting
if the soft limit is obvious from counting the number
of derivatives per field. By this logic a soft limit
σ ≤ ðmþ 2Þ=ðnþ 2Þ is automatic, so the interesting case
is in the opposite regime,

σ >
ρnþ 2

nþ 2
; ð6Þ

after plugging it into Eq. (3). Table I summarizes those
theories which have enhanced soft limits which exceed the
degree expected from naive derivative power counting.
Also listed are the number of physical parameters which
define each theory. Here Galileon4;5 denotes the original
Galileon theory on a basis where the three-point interaction
vertex has been removed by a field redefinition, and
Galileon4 denotes Galileon4;5 theory truncated to just the
four-point interaction. For Galileon4 we have strong
evidence—up to 12-point amplitudes—for an intriguing
Oðz3Þ enhanced soft limit.
Afterwards, we show that fixing (ρ; σ) places constraints

on the Noether currents which can be used to derive the
Lagrangians for Dirac-Born-Infeld (DBI) and Galileon
theories.
Amplitudes from Ansätze.—To begin, we construct an

Ansatz for on-shell tree amplitudes constrained by Lorentz
invariance, factorization, and a specified derivative power
counting and soft limit degree, (ρ; σ). When an Ansatz
exists, the corresponding theory can exist.
The on-shell three-point amplitude vanishes in any

theory due to kinematics, so here we focus on the case
where the leading nonzero on-shell amplitude is four point.
An analogous discussion applies for theories in which the
leading nonzero amplitude is higher point.
Definition of Ansätze.—Any scalar n-point on-shell

scattering amplitude can be written in terms of the
kinematical invariants

sij ¼ ðpi þ pjÞ2 ¼ 2ðpi · pjÞ; i; j ∈ f1;…; ng; ð7Þ

which is a redundant basis. First of all, by momentum
conservation we can always eliminate all dependence on

the momentum of particle n, so we can restrict to sij, where
i; j ≠ n. Second, there is an additional constraint because
particle n is on shell, so

P
i;j≠nsij ¼ 0. Last of all, in four

dimensions, five generic momenta are necessarily linearly
dependent, leading to the so-called Gram-determinant
relations. Since these are nonlinear constraints, a truly
independent set of sij is difficult to compute analytically.
Instead it is much simpler to use a redundant basis of
kinematic invariants and mod out by the redundancy at the
end of the calculation.
Locality of the underlying theory enforces stringent

analyticity conditions on the tree amplitude, fixing it to
be a rational function of momenta. This is required so that
all nonanalyticities in the amplitude come from kinematic
singularities corresponding to factorization channels. The
general Ansatz for the (nþ 2)-point amplitude in a theory
with derivative power counting ρ ¼ m=n is then

Anþ2 ¼
X
α

cð0Þα ðsα1…sαm=2þ1
Þ þ

X
α;β

cð1Þα ðsα1…sαm=2þ2
Þ

sβ

þ
X
α;β

cð2Þα ðsα1…sαm=2þ3
Þ

sβ1sβ2
þ � � � ; ð8Þ

where α labels pairs of external legs that enter into the
numerator factors and β labels factorization channels
whose corresponding off-shell propagators are sβ ¼P

i;j∈βsij. Symmetries of the corresponding Feynman
diagrams relate many coefficients cðkÞα , and moreover
the Ansatz is kinematically redundant due to reasons
mentioned above.
Definition of soft limit.—A priori, the soft limit of An is

obtained by rescaling one of the external momenta by p →
zp with z → 0, but this procedure does not conserve total
momentum. Instead, to compute the soft limit we apply a
complex momentum shift to the external particles, chosen
so as to conserve total momentum and maintain the on-shell
conditions. The complex deformation is controlled by a
number z that labels a one-parameter family of on-shell
amplitudes AnðzÞ where z → 0 corresponds to a soft limit
p → zp and the deficit momenta are channeled into the
remaining hard particles. While any number of legs may be
shifted, we make the minimal choice of three, dubbed the
“soft shift” in Ref. [6]. We then expand in powers of z,

AnðzÞ ¼
X∞
s¼0

An;szs; ð9Þ

where we assume that the soft limit is nonsingular. To
enforce the soft limit An ¼ OðzσÞ, we solve for the
coefficients cðkÞα of the Ansatz in Eq. (8) subject to An;s ¼
0 for s < σ. As noted earlier, the sij’s satisfy complicated
nonlinear constraints, so these equations cannot be solved
in closed form. Instead, we evaluate An numerically many

TABLE I. Theories with (ρ; σ) derivative power counting and
soft limit degree that have enhanced soft limits.

(ρ; σ) Theory Parameters

(0;∞) Free 0
(1,2) Dirac-Born-Infeld 1
(2,2) Galileon4;5 2
(2,3) Galileon4 1
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times at arbitrary kinematical points and expand around
z → 0, yielding linear equations in cðkÞα which are then easy
to solve. We then plug the solution back into the Ansatz,
and the number of independent parameters determines the
number of physical parameters of the theory.
Results.—The analysis of three- and four-point ampli-

tudes is simple for any ρ. The three-point amplitude
vanishes by kinematics, while the four-point amplitude
is nontrivial and has a soft limit fixed by the number of
derivatives per field, independent of the explicit forms
of operators. In particular, for generic ρ we have
mþ 2 ¼ 2ρþ 2 derivatives and, therefore, the kinematical
Ansatz is

A4 ¼
X
a1a2a3

ca1a2a3ðs12Þa1ðs23Þa2ðs31Þa3 ; ð10Þ

for a1 þ a2 þ a3 ¼ ρþ 1. However, in the soft limit
s12; s23; s31 ¼ OðzÞ, so regardless of the particular deriva-
tive structure of the amplitude, A4 ¼ Oðzρþ1Þ. No further
cancellations are possible, so we cannot obtain stronger
behavior by relating the parameters. Next, we consider
higher-point amplitudes for various values of ρ.
Case: ρ ¼ 0.—The soft limit is ill defined because the

Lagrangian secretly describes a free field theory. This is
manifest after a well-chosen field redefinition, ϕ → ϕ0ðϕÞ,
which takes Lð0Þ ¼ ð∂ϕÞ2FðϕÞ ¼ ∂ϕ0∂ϕ0. Hence, while
off-shell Feynman diagrams are nontrivial, they all vanish
on shell.
Note that this is not generally true if ϕ carries a flavor,

which is why OðzÞ behavior is possible in the nonlinear σ
model [4]. Indeed, this is true even if you consider only
flavor-stripped amplitudes [7].
Case: 0 < ρ < 1.—Amplitudes do not vanish in the soft

limit, so An ¼ Oð1Þ. This can be derived by contradiction.
A vanishing soft limit requires that, for each leg, An → 0
when p → 0. Enforcing this on each leg sequentially and
demanding a permutation invariant amplitude yields a
unique Ansatz,

An ¼ pμ1
1 p

μ2
2 …pμn

n Lμ1μ2…μn ; ð11Þ

where Lμ1μ2…μn is a completely symmetric tensor con-
structed from factors of momenta and the metric. This
implies that the number of derivatives cannot be less than
the number of fields, so ρ ≥ 1. This can be easily under-
stood from the symmetry point of view: the theory must be
derivatively coupled to have a vanishing soft limit.
Case: ρ ¼ 1.—The first nontrivial case for a single scalar

is ρ ¼ 1, for which m ¼ n and we have one derivative per
field. If we want to impose OðzÞ behavior in the soft limit,
the theory must necessarily be derivatively coupled; i.e., the
corresponding Lagrangian is Lð1;1Þ ∼

P
λ2nð∂ϕÞ2n. This

simplifies the Ansatz for the amplitude (all labels must
appear in sij). For example, for n ¼ 4 and n ¼ 6, we get

A4 ¼ c4ðs12s34 þ s13s24 þ s14s23Þ ð12Þ

A6 ¼ 2c24

�gs123 gs456
s123

þ � � �
�
þ c6ðs12s34s56 þ � � �Þ; ð13Þ

where the ellipses denote the sum over all permutations and
s123 ¼ s12 þ s23 þ s31, gs123 ¼ s12s23 þ s23s31 þ s31s12.
Now we impose an enhanced soft limit by demanding

that An;1 ¼ 0, so An ¼ Oðz2Þ. The four-point case is trivial
as s12; s23; s31 ∼ z in the soft limit, and Oðz2Þ is trivially
satisfied and there is no condition on c4. At six point this
is a highly nontrivial constraint which is satisfied if we
set c6 ¼ 2c24.
The same argument can be applied to each higher-point

amplitude, so A8 ¼ Oðz2Þ can be used to fix the new
coupling coefficient c8 in terms over lower order couplings.
By induction it is then obvious that this infinite system of
equations has, at most, one solution. Indeed, there is exactly
one solution, and the corresponding c2n conspires to be the
series expansion of

Lð1;2Þ ¼ −
1

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gð∂ϕÞ2

q
; ð14Þ

where g ¼ 2c4 and we ignore vacuum energy. This is the
scalar part of the DBI action, which describes a fluctuation
of a brane in an extra dimension. The hidden symmetry is a
nonlinearly realized higher-dimensional Lorentz symmetry.
Later on, we give an analytical derivation of the DBI
Lagrangian from the soft limit.
Case: ρ ¼ 2.—The inequality in Eq. (6) implies that

σ ≥ 2 is an enhanced soft limit. The general action has
2n − 2 derivatives on n fields ϕ. The theory must have at
least one derivative per field, but the remaining n − 2
derivatives can be distributed in various ways among fields,
so schematically Lð2;1Þ ∼

P∞
n¼2 Fnð∂2n−2ϕnÞ, where Fn

denotes a collection of operators with free coefficients
which have 2n − 2 derivatives on n fields. We construct
the Ansatz for the amplitude for a given n and impose the
condition that An;1 ¼ 0, so An ¼ Oðz2Þ. For n ¼ 4 there are
two independent kinematical structures,

A4 ¼ c1ðs312 þ s323 þ s331Þ þ c2ðs12s23s31Þ; ð15Þ

whose behavior is Oðz3Þ for arbitrary c1 and c2, as argued
earlier. Going to higher points we find unique solutions for
the constraints: A5 ¼ Oðz2Þ, A6 ¼ Oðz3Þ, A7 ¼ Oðz2Þ,
while for n ¼ 8 we get two solutions for σ ¼ 2 and one
solution for σ ¼ 3. It is easy to see the amplitude is
generated by the Lagrangian

Lð2;2Þ ¼ λ4O4 þ λ5O5; ð16Þ

where O4 ∼ ∂6ϕ4 and O5 ∼ ∂8ϕ5 are four- and five-point
interaction vertices. Indeed, the derivative counting and
structure is precisely that of the four- and five-point
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interaction vertices of the four-dimensional Galileon the-
ories studied in Ref. [8]. The Galileon Lagrangian exhibits
a second order shift symmetry ϕ → ϕþ aþ bμxμ and has
equations of motion that are second order in derivatives of
ϕ. The missing three-point interaction can be eliminated via
the Galileon duality (for a detailed discussion, see Ref. [9]),
yielding just the four-and five-point interactions, which we
denote by Galileon4;5.
We have checked up to 12 particles in which the

amplitudes derived fromO4 alone yield An ¼ Oðz3Þ, which
suggests an even simpler theory,

Lð2;3Þ ¼ λ4O4; ð17Þ

which we will refer to as the Galileon4 theory.
Case: ρ > 2.—We have done some partial analyses for

ρ ¼ 3 and ρ ¼ 4 for n ¼ 5 and for ρ ¼ 3 for n ¼ 6, and
indeed there are unique amplitudes there with nontrivial
soft-limit behavior, i.e., A5; A6 ¼ Oðz3Þ for ρ ¼ 3 and
A5 ¼ Oðz4Þ for ρ ¼ 4. It is very suggestive that these
are exactly the theories found in Ref. [10], i.e., theories
with higher shift symmetries.
Case: 1 < ρ ¼ fractional.—As discussed earlier, ρ is a

non-negative rational number. Restricting to derivatively
coupled theories, ρ ≥ 1, so we should consider all theories
with ρ ¼ m=n for integers m; n with m ≥ n. For example,
for ρ ¼ 3=2 we have σ ≥ 2, and the schematic Lagrangian
is

Lðρ;σÞ ∼ ð∂ϕÞ2 þ ð∂8ϕ6Þ þ ð∂14ϕ10Þ þ � � � ð18Þ

For this case we have checked to see that Oðz2Þ soft
behavior is impossible with (∂8ϕ6) and first becomes
possible with (∂14ϕ10). We have done this check for ρ ¼
3
2
; 4
3
; 6
5
; 8
5
which rules out all theories with operators n < 8

for σ ¼ 2.
Amplitudes from equations of motion.—Our analysis

thus far does not prove the existence of theories: as such,
a claim would require an accounting of an infinite number
of amplitudes. However, we can finish the job by using the
prescribed soft limits to derive the Lagrangians for these
theories explicitly. The action for a massless scalar field is

S½ϕ�¼
Z

d4xLðϕ;∂ϕÞ¼
Z

d4x
1

2
ð∂ϕÞ2þSint½ϕ�; ð19Þ

where Sint contains all nonlinear interactions. The equations
of motion are

□ϕðxÞ¼δSint½ϕ�
δϕðxÞ : ð20Þ

Equations of motion are identically satisfied when evalu-
ated inside a time-ordered product. Hence, Eq. (20) is valid
when sandwiched between in and out states such that define
the on-shell scattering amplitude A¼hfjii. We thus obtain
hfjδSint½ϕ�=δϕðxÞjii¼hfj□ϕðxÞjii. Transforming to the

Fourier conjugate field ~ϕðpÞ where p≡pf−pi and taking
the on-shell limit, p2→0, we obtain the Lehmann-
Symanzik-Zimmermann reduction formula for the ampli-
tude with the scalar emitted with momentum p,

AðpÞ≡hfþ ~ϕðpÞjii¼ lim
p2→0

ihfjδSint½
~ϕ�

δ ~ϕðpÞ jii: ð21Þ

Here AðpÞ satisfies Eq. (1) in the soft limit if and only if

hfjδSint½ϕ�
δϕðxÞ jii¼∂μ1…∂μσhfjKμ1…μσ ðxÞjii; ð22Þ

for some local operator Kμ1…μnðxÞ, in which case

AðpÞ¼ lim
p2→0

iσþ1pμ1…pμσ hfj ~Kμ1…μσ ðpÞjii: ð23Þ

The assumption of locality is crucial: if the Fourier trans-
formed operator ~Kμ1…μnðpÞ is singular as p goes to zero,
then this will compensate for the pμ1…pμσ factors in the
numerator. However, regularity of the operator at p→0 is,
in principle, violated if the theory has cubic vertices, in
which case the soft limit can generate collinear singularities
which produce inverse powers of z.
The condition in Eq. (22) is satisfied provided

δSint½ϕ�
δϕðxÞ ¼ ∂μ1…∂μσK

μ1…μσ ðxÞ; ð24Þ

on the support of any equations which hold when evaluated
inside the time-ordered product, i.e., when sandwiched
between the in and out states. A priori, Eq. (24) can be true
due to algebraic identities or conservation equations. Let us
classify each theory in turn.
Case: ðρ; σÞ ¼ ð1; 1Þ.—These theories have exactly one

derivative per field, so the Lagrangian is LðXÞ ¼
X=2þ LintðXÞ ¼

P
ncnX

n, where X ¼ ð∂ϕÞ2. The
Noether current is

Jμ ¼ ∂LðXÞ
∂ð∂μϕÞ

¼ 2L0ðXÞ∂μϕ; ð25Þ

and the variation of the action yields

δSint
δϕ

¼ −∂μ
∂LintðXÞ
∂ð∂μϕÞ

¼ ∂μð∂μϕ − JμÞ; ð26Þ

which is of the form of Eq. (24), with σ ¼ 1 for any cn.
Case: ðρ; σÞ ¼ ð1; 2Þ.—Extending to an enhanced soft

limit σ ¼ 2 implies additional constraints on LðXÞ, so the
cn’s are constrained. Plugging Eq. (26) into Eq. (22) for
σ ¼ 2 implies that

hfjJμjii ¼ ∂νhfjLμνjii: ð27Þ

However, Jμ ¼ ∂νLμν cannot be true algebraically, simply
becauseLμν involves ∂ϕ, so ∂νLμν involves ∂∂ϕ, which can
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never match Jμ, which only involves ∂ϕ. Consequently, we
need a supplemental equation that holds when evaluated
between in and out states. The natural candidate equation is
conservation of the energy-momentum tensor,

Tμν ¼ 2L0ðXÞ∂μϕ∂νϕ − ημνLðXÞ: ð28Þ
By derivative counting, there is a unique Ansatz for Lμν for
which ∂νLμν does not involve ∂∂ϕwhen evaluated between
in and out states:Lμν ¼ gϕTμν for some constant g. Plugging
this into Eq. (27), we obtain

hfjJμjii ¼ ∂νhfjLμνjii ¼ ghfjTμν∂νϕjii; ð29Þ
where we have used ∂νTμν ¼ 0 when evaluated between in
and out states. This formula is automatically true if Jμ ¼
gTμν∂νϕ applies algebraically, which implies the differential
equation

2L0ðXÞ=g ¼ 2L0ðXÞX − LðXÞ; ð30Þ
whose solution is LðXÞ ∝ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − gX
p

, which is precisely the
DBIactionforasinglescalar field. Inprinciple, therecouldbe
solutions which do not satisfy Jμ ¼ gTμν∂νϕ algebraically.
However, our earlier scattering amplitude analysis found that
thereexistsonlyoneorzero theorieswithaσ ¼ 2soft limit, so
the one and only solution is the DBI theory.
Case: ðρ; σÞ ¼ ð2; 2Þ.—These theories are of the form

L ¼ P
ncn∂2ðn−1Þϕn. As before, σ ¼ 2 implies the con-

dition in Eq. (27). As shown in Ref. [11], this constraint is
algebraically satisfied for the Noether current associated
with the Galileon. A subtlety in this case is that the Galileon
theory has a cubic vertex, in which case Lμν can, in
principle, not be regular at p → 0. However, a field
redefinition of the Galileon can be used to eliminate the
cubic vertex [9], truncating down to Galileon4;5. Note that
in an explicit evaluation of amplitudes that shows the
further restriction to only four-point interaction vertices,
Galileon4 satisfies stronger soft-limit behavior, σ ¼ 3. We
do not yet have a general proof for this.
Finally, we note that for ðρ; σÞ ¼ ð1; 2Þ; ð2; 2Þ, one can

construct a fully nonperturbative derivation of Oðz2Þ
scaling from symmetries without a priori knowledge of
the Lagrangian. We present the full details in Ref. [12].
Conclusion.—In this Letter we have shown that scatter-

ing amplitudes can be used to derive and classify scalar
effective field theories. Soft limits and derivative power
counting uniquely fix the Lagrangian of the corresponding
effective field theory, and we have derived DBI and
Galileon theories as examples. This work is part of a more
general program to construct and classify all possible
effective field theories and symmetries, with the possibility
of discovering new ones.
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