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We present a new variational method based on the matrix product operator (MPO) ansatz, for finding the
steady state of dissipative quantum chains governed by master equations of the Lindblad form. Instead of
requiring an accurate representation of the system evolution until the stationary state is attained, the
algorithm directly targets the final state, thus, allowing for a faster convergence when the steady state is a
MPO with small bond dimension. Our numerical simulations for several dissipative spin models over a
wide range of parameters illustrate the performance of the method and show that, indeed, the stationary
state is often well described by a MPO of very moderate dimensions.
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Introduction.—The physics of quantum systems out of
equilibrium poses unsolved fundamental questions relating
to nature at extreme conditions and to the dynamics after
long time evolution. Progress in this field is, however, hard
to achieve, due to the lack of analytical tools to solve many
such problems and the limitations of existing numerical
methods.
In recent times, growing attention has been directed to the

out-of-equilibrium physics of open quantum systems, i.e.,
systems in interaction with an environment. This interest has
been intensified by the potential applications to the fields of
condensed matter physics, statistical physics, and quantum
information processing [1–4]. In particular, it has been
shown that dissipation can be used to engineer interesting
quantum many-body states and to perform universal quan-
tum computation [1,5], ideas which can be explored in the
context of current experimental setups based on atomic
systems [6]. A particularly interesting topic is that of
dissipative quantum phase transitions (DQPTs), namely,
transitions in the nonequilibrium steady state of an open
system, which may arise from the competing effects of the
Hamiltonian and the dissipative terms of the dynamics. An
archetypical example is that of the model [7,8], but DQPTs
have also been studied in fermionic [9–11], bosonic [12],
and quantum spin systems [13–15].
Finding the stationary state of a generic master equation

is not easy, even for 1D systems. Analytical treatment is
limited to very specific problems, such as quadratic
fermionic models [16] or systems under special conditions
or approximations [17,18], and most often numerical
techniques are necessary.
As in the case of pure states, an exact numerical

treatment is possible only for small systems due to the
exponentially growing computational cost, which may be
even more severe in the case of mixed states. For pure
states, parametrizing the state as a tensor network [19–21]

has proven an efficient alternative that can successfully
capture the physical properties of quantum many-body
states in countless situations of interest. The best example is
the tremendous success of the density matrix renormaliza-
tion group (DMRG) [22,23] based on the matrix product
state (MPS) ansatz, which provides a quasiexact solution
for one-dimensional problems. The MPS can accurately
describe ground states of gapped local Hamiltonians
[24,25], and methods have been defined to use them also
in real time evolution [26–29]. In combination with
quantum trajectories, the latter have also been applied to
dissipative dynamics [30]. The natural extension to oper-
ators, namely, matrix product operators (MPOs), can be
used as an ansatz for mixed states [31,32], which is known
to accurately describe thermal equilibrium states for local
Hamiltonians [33,34]. Such an extension, in combination
with the time evolution algorithms, has allowed the
numerical exploration of steady states of spin chains and
other one-dimensional systems under local dissipation (see,
e.g., Refs. [3,35–40]).
This method is formally similar to the search for a

ground state using imaginary time evolution [26], in that a
given initial state is evolved until reaching a fixed point of
the dynamics. However, different from the imaginary time
evolution method, where the sequence of states visited by
the algorithm is not of physical significance, in the
simulation of a master equation, the real evolution needs
to be followed so that errors in the intermediate state can
severely affect the convergence of the procedure.
A better alternative could be given by a variational

method, which searches for the null vector of the Lindblad
superoperator within the MPO family, in the spirit of the
DMRG variational search. Such a method would be
potentially more efficient than simulating the full evolution,
especially when the latter traverses intermediate states with
a large bond dimension, but the true steady state is
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described by a small one, as is often the case [3,36,41]. In
this Letter, we present such variational method for the
steady state of a master equation in Lindblad form. We
illustrate the performance of the algorithm with results for
several one-dimensional models. Notice that a variational
method, similar in spirit but restricted to density matrices
containing only few-body correlations, has been recently
proposed in Ref. [42].
Basic concepts.—A MPS for a quantum system of

Nd-dimensional components is a state vector of the form
jΨi ¼ P

fsigtrðA
s1
1 …AsN

N Þjs1…sNi [43], where each Ai is a
d ×D ×D tensor, D is a parameter of the representation
called bond dimension, and the sum runs over all elements
of each individual basis si ¼ 1;…; d. By successively
increasing the bond dimension D, the MPS family defines
a hierarchy of states covering vector space spanned by the
tensor product of the individual bases, fjsiig. The same
ansatz can be used to represent operators whose coefficients
in a tensor product basis have the structure of a matrix
product, Ô ¼ P

fsi;rigtrðA
s1r1
1 …AsNrN

N Þjs1…sNihr1…rN j.
These are called MPOs [31,32,44]. The operators can be
vectorized using Choi’s isomorphism jsiihrij → jsirii,
which maps any operator Ô to a vector jΦðOÞi, so that
it is possible to work in the vector space of operators with
the usual MPS techniques.
In order to describe physical mixed states, MPOs or, in

this case, matrix product density operators (MPDOs), have
to satisfy additional conditions; namely, they have to be
normalized (trρ ¼ 1), Hermitian, and positive semidefinite.
While the first two conditions are easy to impose on the local
tensors of the ansatz, the positivity involves the full spectrum
of the operator and is, thus, a nonlocal property. The ansatz
can be modified to represent positive operators using a local
purification of the state withMPS structure. In this case, each
tensor has a structure Aij

n ¼ P
kX

ik
n ⊗ X̄jk

n , where the index
k sums over the ancillary degree of freedom, and the bar
indicates complex conjugation. Although it guarantees
positivity, working with the purification ansatz is, in general,
computationally more costly [45], and, moreover, the bond
dimension required to write the purification ansatz may be
much larger than that of the MPO [46] so that in practice it is
not always the most convenient choice.
A variational search for the steady state.—We consider a

chain of length N, with a quantum system of physical
dimension d on each site and dynamics governed by a
master equation of Lindblad form dρ

dt ¼ L½ρ�, where the rhs
is the Lindbladian superoperator,

L½ρ� ¼ −i½H; ρ� þ
X

α

1

2
ð2LαρL

†
α − fL†

αLα; ρgÞ: ð1Þ

The unitary part of the evolution is determined by the
system Hamiltonian, H. The effect of the environment is
described by a set of Lindblad operators, Lα.

The Lindbladian acts linearly on the vectorized ρ as

L̂ ¼ −iðH ⊗ 1þ 1 ⊗ HÞ

þ
X

α

1

2
ð2Lα ⊗ L̄α − L†

αLα ⊗ 1 − 1 ⊗ LT
α L̄αÞ: ð2Þ

The steady state is a fixed point of the evolution
ðdρs=dtÞ ¼ 0 and corresponds to a vector jΦðρsÞi satisfy-
ing L̂jΦðρsÞi ¼ 0, i.e., a zero eigenvector of L̂. If the
Hamiltonian and the individual Lindblad operators have
local character, the Lindbladian can be written as a MPO
(strictly speaking, it is enough that H and each Lα can
themselves be written as MPOs, which include short-range
interactions and dissipation but can also be applied to
approximate power-law decaying terms [44]), and we can
search for the best MPS approximation to its zero eigen-
vector, which will give us a vectorized MPO approximation
for the steady state. Since the operator (2) is not Hermitian,
in order to use the standard variational search with the
MPS, we consider instead the Hermitian product L̂†L̂. The
steady state is also a zero eigenvector of this operator, and,
since L̂†L̂ ≽ 0, it corresponds to the lowest eigenvalue. If L̂
can be written as a MPO, the product can also, and it is then
possible to use standard MPS algorithms to approximate
its ground state [20,23]. Notice the particular case of
Hermitian Lα is especially easy, since the (properly
normalized) identity is a steady state, which can be exactly
written as a MPS with bond dimension D ¼ 1.
The fact that we are targeting density matrices requires

particular attention because not every MPS vector can
represent a valid physical state. The normalization con-
dition trρ ¼ 1 translates to hΦð1ÞjΦðρÞi ¼ 1, where jΦð1Þi
is the (unnormalized) vector that corresponds to the
trace map, namely, the maximally entangled jΦð1Þi ¼P

fsigjs1…sNi ⊗ js1…sNi. A solution which is not
orthogonal to this vector can always be normalized to
ensure the trace condition. In general, it is more compli-
cated to decide whether a MPS corresponds to a positive
operator, since we do not have access to the full spectrum.
The purification ansatz can guarantee that the search runs
over only positive operators but at the expense of more
costly local optimizations [45]. Hence, we use simply the
vectorized MPO form and rely on the mathematical
properties of the problem to provide a physical solution.
Since the evolution generated by L is a CP map, it must
have a positive fixed point so that if this is nondegenerate,
the algorithm should naturally converge towards a MPO
approximation of a positive (and, hence, Hermitian) oper-
ator [strictly speaking, this may fail if the algorithm gets
stuck in local minima or if there are degeneracies, as is
known to happen also for DMRGs (see, e.g., Ref. [47])],
and it is then expected to be almost positive, with any
nonpositiveness being compatible with the truncation error.
In practice, we find that a suitable warm-up phase (see the

Supplemental Material [48]) allows us to avoid solutions
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with vanishing trace and improves the convergence of the
algorithm. (Notice that it is also possible to use a Lagrange
multiplier term of the form jΦð1ÞihΦð1Þj to favor solutions
with nonvanishing trace. This can be subtracted from L̂†L̂,
thus, increasing in one unit the bond dimension of the MPO.
In practice, we found that the warm-up phase was enough to
obtain physical solutions without increasing the computa-
tional cost.) Although positivity cannot be checked explicitly
(it is, in fact, a hard problem [50]), there is a number of
necessary criteria that any physical state needs to satisfy,
such as physically sensible values of all single-body observ-
ables. Our algorithm performs a set of such tests and only
accepts solutions that pass them all, otherwise, restarting the
search with a different initial guess. The role of our
consistency checks is to discard the least suitable guesses
during the warm-up phase in order to prepare a suitable
initial state for the variational search. During the later phases
of the algorithm, the tests are used as assertions, while we
rely on the convergence criteria (including that of the
effective energy) to stop the calculation. After finding an
acceptable solution for a given bond dimension D, we
compute the desired expectation values from the Hermitian
part of the MPO ðρþ ρ†Þ=2, as often done in other
algorithms to reduce numerical errors (the norm of the
non-Hermitian part can also be used as additional consis-
tency check). The found solution is normalized and used as
an initial guess for a larger bond dimension, and finally
convergence in D is decided when the targeted observables
are converged to the desired precision.
The algorithm as described here is, thus, formally equiv-

alent to the variational ground-state search for a MPO
Hamiltonian over the MPS family and presents the same
scaling, only with d2 playing the role of the physical
dimension, and with an effective Hamiltonian which has
the squared bond dimension of the MPO for L̂. The gap of
L̂†L̂ will be the determinant for the convergence of the
algorithm. It is interesting tonotice that this is not related to the
eigenvalues of L̂ but to its (squared) singular values (see
Ref. [48]). All in all we, find that for typical cases, the small
bond dimension required to approximate the steady state as a
MPO compensates for the additional computational effort
associated to L̂†L̂, provided theLindbladian isnotdegenerate.
Another variational approach has been recently proposed

[42], which chooses to minimize the trace norm of L½ρ�.
Since this quantity is not efficiently computable, the
method in Ref. [42] proceeds by minimizing an upper
bound to this norm for restricted sets of density matrices.
Our eigenvalue minimization is, instead, equivalent to
finding the vector that minimizes the Euclidean norm
∥L̂jΦðρÞi∥ with the constraint ∥jΦðρÞi∥ ¼ 1. Both mini-
mizations have an exact solution in the physical steady
state, although they are not equivalent when not exactly on
the stationary state. Using the Euclidean norm of the
vectorized expression is preferable in our case, because

the trace norm requires the full diagonalization of the
operators, impossible for the system sizes we are interested
in, while the norm of the vectorized operators is efficiently
calculable for the MPS ansatz.
Numerical results.—results.To illustrate the performance

of the algorithm, we apply it to several spin chains, where
the unitary and dissipative dynamics show competing
effects regarding the coherence of the steady state.
Low-dimensional Dicke model.—results.A typical exam-

ple of DQPT is exhibited by the Dicke model [7,8], in
which the collective interaction with a single radiation
mode induces coherent behavior on a system ofN two-level
atoms. The regime of parameters required to observe the
DQPT is challenging, and the experimental observation
of the phase transition has only been achieved recently
[51–53]. It is, thus, interesting to understand the behavior
of similar models which may then be easier to realize
experimentally. We consider a chain of N two-level
systems, where each pair of systems couples coherently
to a common radiation mode. This can be represented by a
spin-1=2 chain governed by a single-particle Hamiltonian
H ¼ P

N
i¼1 gσ

x
i and Lindblad operators Li ¼ γðσ−i þ σ−iþ1Þ,

for i ¼ 1;…; N − 1, instead of the single collective
Lindblad operator of the Dicke model so that this model
can be considered a low-dimensional version of the latter.
We study the nature of the steady state found by the
algorithm at varying values of g=γ and increasing system
sizes N up to 100, which allows us to perform a finite
size extrapolation and study single-site observables and
correlations in the thermodynamic limit. In the Dicke
model, the superradiant phase transition (at g=γ2 ¼ N)
[8] is visible in these observables. In the low-dimensional
version, we do not find evidence of such transition,
although (short-range) correlations appear, as shown in
Fig. 1 for S2y¼ðPiσ

y
i =NÞ2. It is remarkable that for all

values g=γ ≥ 0.35 and system sizes N ≤ 100, the

FIG. 1 (color online). Left: Correlation hS2yi for the low-
dimensional Dicke model, as a function of g=γ for system sizes
N ¼ 10–100 (in increasingly darker shades). The solid line is the
result of finite size extrapolation, linear in 1=N, as explicitly
shown in the inset for several values of g=γ. Right: Purity of the
converged steady state for the same system sizes. For large
dissipation (shaded region), we show only results for the smallest
systems, for which the simple variational search converges
reliably. The inset shows the explicit dependence of the purity
on the system size for several coupling values.
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steady state is converged with very small bond
dimension D < 30, most of them even with D ≤ 20. At
g ¼ 0, there are, however, two dark states, namely, j0i⊗N

and ð1= ffiffiffiffi
N

p ÞPN
k¼1ð−1Þkj0ðk−1Þ…1…0ðN−kÞi. Hence, the

null subspace of L̂ is fourfold degenerate. This hinders
the convergence of the algorithm at very small g=γ, as the
steady state is no longer the unique and positive zero
eigenvector, and the warm-up strategy is not enough to
guarantee a physical solution, except for the smallest system
sizes (N ≤ 20). For those converged cases, we can detect the
peculiarity of this parameter region by analyzing the purity
of the solution shown in Fig. 1. Indeed, we can find positive
solutions with increasing purity, which can be up to 1 for
g ¼ 0 (notice that for g ¼ 0, any mixture of both dark states
will be a steady state, with purity in [0.5,1]). In principle, one
could complement the method with additional techniques to
try and select the physical steady states (e.g., finding and
then processing several orthogonal eigenstates, not neces-
sarily physical) even for larger chains. Here we have,
nevertheless, focused on the convergence in the most
commonly occurring situation of a unique steady state,
where the method can provide the largest gain by directly
targeting a MPO with small bond dimension.
Dissipative Ising chain.—A complementary kind of

model is one where the Hamiltonian dynamics induces
correlations, for instance, an Ising chain, and the dissipa-
tion is purely local. We consider a nearest-neighbor
Ising interaction H ¼ ðV=4ÞPi<Nσ

z
iσ

z
iþ1 þ

P
ifðΩ=2Þσxi−

½ðV − ΔÞ=2�σzig þ ðV=4Þðσz1 þ σzNÞ and local dissipation
given by Li ¼ ffiffiffi

γ
p

σþi , i ¼ 1;…; N. Such a model has
attracted considerable attention in recent years, as it can
be effectively realized in atomic lattice systems using
Rydberg states [15,54,55]. In order to compare to existing
results in the literature [54], we fix γ ¼ 1, V ¼ 5, and
Ω ¼ 1.5. We compute the steady state for systems up to
N ¼ 50 and study the squared of the staggered magneti-
zationMz ¼

P
ið−1Þiσzi =N equivalent to the antiferromag-

netic order parameter defined in Ref. [54] and the purity of
the steady state as a function of Δ (Fig. 2). We find that our
convergence criteria are met with small bond dimension
D ≤ 20. Our results show the order parameter vanishing as
N → ∞, consistent with short-range correlations, which,
indeed, are observed to decay exponentially. We observe
that the purity of the steady state grows for large absolute
values of Δ. This can be easily understood by going to the
interaction picture with respect to the single body σzi terms
in the Hamiltonian. This does not change the form of the
dissipative terms, but for very large jV − Δj, the σxi terms
can be neglected in the rotating wave approximation. In this
situation, the single dark state of the dissipation, the fully
polarized state j0i⊗N , is also an eigenstate of the
Hamiltonian and is, thus, a steady state.
The method can also be applied to other models, for

instance, with coherence induced by both the Hamiltonian
and the environment [48].

Conclusion.—We have presented and analyzed a varia-
tional algorithm that searches for a MPO approximation to
the steady state of an open quantum system. The algorithm
is applicable to any model in which the Hamiltonian and
the Lindblad operators can be expressed as MPOs. Instead
of simulating the real time evolution of the system, as done
by other existing tensor network approaches, this method
directly targets the stationary state, without the need to
precisely describe intermediate states which may need a
larger bond dimension than the actual solution. Thus, our
technique can allow for a more efficient exploration of the
steady-state phase diagram. Our numerical results have
shown that for a variated set of models, with correlations
created by the unitary evolution, the dissipation or both
[48], the steady state is, indeed, well approximated by a
MPO of very small bond dimension D ≤ 30 for sizes up to
N ¼ 100. This can be directly compared to the bond
dimensions required to describe the intermediate states
in time evolution methods. For instance, in Ref. [56]
D ≈ 200 was required for a dissipative Ising chain of
length N ¼ 40. In Ref. [3], the evolution required D of
several hundreds [57] for an XXZ chain of length N ¼ 96
when the steady state has D ¼ 1.
Our approach is based on the ground-state optimization

over the MPS for a MPO Hamiltonian and relies on the
guaranteed existence of a valid, positive steady state. This
basic technique is complemented with a warm-up phase
or a suitable initial guess found to be crucial in practice
for convergence to a physical result with small bond
dimension.
When the steady state is degenerate, the simplest method

described in this Letter might have problems to find a valid
guess for the steady state. In particular, in the situation of
several dark states, the null subspace of the Lindbladian
contains infinitely many vectors which do not correspond
to positive operators and, hence, do not constitute valid

FIG. 2 (color online). Left: Antiferromagnetic order parameterffiffiffiffiffiffiffiffiffiffi
hM2

zi
p

in the steady state of the Ising model with local
dissipation, for several system sizes, and fixed γ ¼ 1, V ¼ 5,
Ω ¼ 1.5, as a function of Δ. The inset shows the exponential
decay of correlations CN=2

zz ðnÞ¼hσzN=2σ
z
N=2þni−hσzN=2ihσzN=2þni,

for N ¼ 50 in the various regions of Δ. Right: Purity of the
converged steady state for the same system sizes. The inset shows
the local polarization σzn for the N ¼ 10 case. At Δ ¼ 0, the
antiferromagnetic ordering can be appreciated, while for larger
values of jΔj, the steady state approaches total polarization.
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physical states (notice that this situation could also be
adverse for time evolving numerical methods). In principle,
it would be possible to complement the current algorithm
with additional techniques, such as symmetries, in order to
reduce the degeneracy, or to construct a candidate steady
state from appropriate combinations of several linearly
independent null vectors, even if nonpositive.

We are thankful to G. Giedke, D. Porras, H. Weimer, J.
von Delft, and F. Mintert for discussions. J. C. is supported
by the Max Planck Gesellschaft Chinese Academy of
Sciences joint doctoral promotion program and acknowl-
edges Max-Planck-Institute of Quantum Optics, Institute of
Physics Chinese Academy of Sciences, and Freiburg
Institute for Advanced Studies, where part of the research
was carried out. This work was partially supported by the
EU through SIQS Grant No. FP7 600645.

[1] F. Verstraete, M. M.Wolf, and J. Ignacio Cirac, Nat. Phys. 5,
633 (2009).

[2] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Nat. Phys. 7,
971 (2011).

[3] Z. Cai and T. Barthel, Phys. Rev. Lett. 111, 150403 (2013).
[4] M. J. Kastoryano, M. M.Wolf, and J. Eisert, Phys. Rev. Lett.

110, 110501 (2013).
[5] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Buchler,

and P. Zoller, Nat. Phys. 4, 878 (2008).
[6] M. Müller, S. Diehl, G. Pupillo, and P. Zoller, in Advances in

Atomic, Molecular, and Optical Physics, edited by E. A.
Paul Berman and C. Lin (Academic Press, New York,
2012), Vol. 61, pp. 1–80.

[7] R. Dicke, Phys. Rev. 93, 99 (1954).
[8] H. J. Carmichael, J. Phys. B 13, 3551 (1980).
[9] J. Eisert and T. Prosen, arXiv:1012.5013.

[10] B. Horstmann, J. I. Cirac, and G. Giedke, Phys. Rev. A 87,
012108 (2013).

[11] M. Höning, M. Moos, and M. Fleischhauer, Phys. Rev. A
86, 013606 (2012).

[12] L. M. Sieberer, S. D. Huber, E. Altman, and S. Diehl, Phys.
Rev. Lett. 110, 195301 (2013).

[13] T. Prosen and I. Pižorn, Phys. Rev. Lett. 101, 105701 (2008).
[14] E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M. D.

Lukin, and J. I. Cirac, Phys. Rev. A 86, 012116 (2012).
[15] C. Ates, B. Olmos, J. P. Garrahan, and I. Lesanovsky, Phys.

Rev. A 85, 043620 (2012).
[16] T. Prosen, New J. Phys. 10, 043026 (2008).
[17] P. Degenfeld-Schonburg and M. J. Hartmann, Phys. Rev. B

89, 245108 (2014).
[18] A. C. Y. Li, F. Petruccione, and J. Koch, Sci. Rep. 4 (2014).
[19] J. I. Cirac and F. Verstraete, J. Phys. A 42, 504004 (2009).
[20] F.Verstraete,V.Murg, and J.Cirac,Adv. Phys. 57, 143 (2008).
[21] R. Orús, Ann. Phys. (Amsterdam) 349, 117 (2014).
[22] S. White, Phys. Rev. Lett. 69, 2863 (1992).
[23] U. Schollwöck, Ann. Phys. (Amsterdam) 326, 96 (2011).
[24] F. Verstraete and J. I. Cirac, Phys. Rev. B 73, 094423 (2006).
[25] M. B. Hastings, J. Stat. Mech. (2007) P08024.
[26] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).

[27] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat.
Mech. (2004) P04005.

[28] M. J. Hartmann, J. Prior, S. R. Clark, and M. B. Plenio,
Phys. Rev. Lett. 102, 057202 (2009).

[29] M. C. Bañuls, M. B. Hastings, F. Verstraete, and J. I. Cirac,
Phys. Rev. Lett. 102, 240603 (2009).

[30] A. J. Daley, J. M. Taylor, S. Diehl, M. Baranov, and P.
Zoller, Phys. Rev. Lett. 102, 040402 (2009).

[31] F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, Phys. Rev.
Lett. 93, 207204 (2004).

[32] M. Zwolak and G. Vidal, Phys. Rev. Lett. 93, 207205 (2004).
[33] M. B. Hastings, Phys. Rev. B 73, 085115 (2006).
[34] A. Molnar, N. Schuch, F. Verstraete, and J. I. Cirac, Phys.

Rev. B 91, 045138 (2015).
[35] T. Prosen and M. Žnidarič, J. Stat. Mech. (2009) P02035.
[36] L. Bonnes, D. Charrier, and A. M. Läuchli, Phys. Rev. A 90,

033612 (2014).
[37] J. J. Mendoza-Arenas, T. Grujic, D. Jaksch, and S. R. Clark,

Phys. Rev. B 87, 235130 (2013).
[38] I. Pižorn, Phys. Rev. A 88, 043635 (2013).
[39] F. W. G. Transchel, A. Milsted, and T. J. Osborne,

arXiv:1411.5546.
[40] A. H. Werner, D. Jaschke, P. Silvi, T. Calarco, J. Eisert, and

S. Montangero, arXiv:1412.5746.
[41] D. Linzner, M. Honing, and M. Fleischhauer (private

communication).
[42] H. Weimer, Phys. Rev. Lett. 114, 040402 (2015).
[43] D. Pérez-García, F. Verstraete, M. M. Wolf, and J. I. Cirac,

Quantum Inf. Comput. 7, 401 (2007).
[44] B. Pirvu, V. Murg, J. I. Cirac, and F. Verstraete, New J. Phys.

12, 025012 (2010).
[45] M. Lubasch, J. I. Cirac, and M. -C. Bañuls, Phys. Rev. B 90,

064425 (2014).
[46] G. D. las Cuevas, N. Schuch, D. Pérez-García, and J. I.

Cirac, New J. Phys. 15, 123021 (2013).
[47] S. R.White andD. J. Scalapino,Phys.Rev.Lett.80, 1272 (1998).
[48] See the Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.114.220601, for basic
approaches to lowest eigenvalue state, procedures of "warm-
up" phase, criteria to rule out unphysical solutions and judge
convergence, application to a different type of system and
comparison between effective energy and the spectral gap,
which includes Ref. [49].

[49] F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93,
227205 (2004).

[50] M. Kliesch, D. Gross, and J. Eisert, Phys. Rev. Lett. 113,
160503 (2014).

[51] K. Baumann, C. Guerlin, F. Brennecke, and T. E. Esslinger,
Nature (London) 464, 1301 (2010).

[52] C. Hamner, C. Qu, Y. Zhang, J. Chang, M. Gong, C. Zhang,
and P. Engels, Nat. Commun. 5, 4023 (2014).

[53] M. P. Baden, K. J. Arnold, A. L. Grimsmo, S. Parkins, and
M. D. Barrett, Phys. Rev. Lett. 113, 020408 (2014).

[54] T. E. Lee, H. Häffner, and M. C. Cross, Phys. Rev. A 84,
031402 (2011).

[55] M. Höning, D. Muth, D. Petrosyan, and M. Fleischhauer,
Phys. Rev. A 87, 023401 (2013).

[56] M. Höning, Ph.D. thesis, Technische Universität Kaiser-
slautern, 2014.

[57] T. Barthel (private communication).

PRL 114, 220601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
5 JUNE 2015

220601-5

http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1103/PhysRevLett.111.150403
http://dx.doi.org/10.1103/PhysRevLett.110.110501
http://dx.doi.org/10.1103/PhysRevLett.110.110501
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1088/0022-3700/13/18/009
http://arXiv.org/abs/1012.5013
http://dx.doi.org/10.1103/PhysRevA.87.012108
http://dx.doi.org/10.1103/PhysRevA.87.012108
http://dx.doi.org/10.1103/PhysRevA.86.013606
http://dx.doi.org/10.1103/PhysRevA.86.013606
http://dx.doi.org/10.1103/PhysRevLett.110.195301
http://dx.doi.org/10.1103/PhysRevLett.110.195301
http://dx.doi.org/10.1103/PhysRevLett.101.105701
http://dx.doi.org/10.1103/PhysRevA.86.012116
http://dx.doi.org/10.1103/PhysRevA.85.043620
http://dx.doi.org/10.1103/PhysRevA.85.043620
http://dx.doi.org/10.1088/1367-2630/10/4/043026
http://dx.doi.org/10.1103/PhysRevB.89.245108
http://dx.doi.org/10.1103/PhysRevB.89.245108
http://dx.doi.org/10.1038/srep04887
http://dx.doi.org/10.1088/1751-8113/42/50/504004
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1088/1742-5468/2007/08/P08024
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1103/PhysRevLett.102.057202
http://dx.doi.org/10.1103/PhysRevLett.102.240603
http://dx.doi.org/10.1103/PhysRevLett.102.040402
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207205
http://dx.doi.org/10.1103/PhysRevB.73.085115
http://dx.doi.org/10.1103/PhysRevB.91.045138
http://dx.doi.org/10.1103/PhysRevB.91.045138
http://dx.doi.org/10.1088/1742-5468/2009/02/P02035
http://dx.doi.org/10.1103/PhysRevA.90.033612
http://dx.doi.org/10.1103/PhysRevA.90.033612
http://dx.doi.org/10.1103/PhysRevB.87.235130
http://dx.doi.org/10.1103/PhysRevA.88.043635
http://arXiv.org/abs/1411.5546
http://arXiv.org/abs/1412.5746
http://dx.doi.org/10.1103/PhysRevLett.114.040402
http://dx.doi.org/10.1088/1367-2630/12/2/025012
http://dx.doi.org/10.1088/1367-2630/12/2/025012
http://dx.doi.org/10.1103/PhysRevB.90.064425
http://dx.doi.org/10.1103/PhysRevB.90.064425
http://dx.doi.org/10.1088/1367-2630/15/12/123021
http://dx.doi.org/10.1103/PhysRevLett.80.1272
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.220601
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.220601
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.220601
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.220601
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.220601
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.220601
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.220601
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://dx.doi.org/10.1103/PhysRevLett.113.160503
http://dx.doi.org/10.1103/PhysRevLett.113.160503
http://dx.doi.org/10.1038/nature09009
http://dx.doi.org/10.1038/ncomms5023
http://dx.doi.org/10.1103/PhysRevLett.113.020408
http://dx.doi.org/10.1103/PhysRevA.84.031402
http://dx.doi.org/10.1103/PhysRevA.84.031402
http://dx.doi.org/10.1103/PhysRevA.87.023401

