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We apply a recently developed method combining first principles based Wannier functions with
solutions to the Bogoliubov–de Gennes equations to the problem of interpreting STM data in cuprate
superconductors. We show that the observed images of Zn on the surface of Bi2Sr2CaCu2O8 can only be
understood by accounting for the tails of the Cu Wannier functions, which include significant weight on
apical O sites in neighboring unit cells. This calculation thus puts earlier crude “filter” theories on a
microscopic foundation and solves a long-standing puzzle. We then study quasiparticle interference
phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in
cuprates can be understood in terms of the interference of Wannier functions above the surface. Our results
show excellent agreement with experiment and enable a better understanding of novel phenomena in the
cuprates via STM imaging.
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Scanning tunneling microscopy (STM) methods were
applied to cuprates relatively early on, but dramatic
improvements in energy and spatial resolution led to a
new set of classic discoveries in the early part of the last
decade, giving for the first time a truly local picture of the
superconducting and pseudogap states at low temperatures
[1,2]. These measurements revealed gaps that were much
more inhomogeneous than had previously been anticipated
[3–6], exhibited localized impurity resonant states [7,8],
and gave important clues to the nature of competing order
[9–13]. More recently, STM has again been at the forefront
of studies of inhomogeneities, this time as a real space
probe of intraunit cell charge ordering visible in the
underdoped systems [14]. While a microscopic description
of such atomic scale phenomena in superconductors is
available in terms of the Bogolibuov–de Gennes (BdG)
equations, such calculations are always performed on a
lattice with sites centered on the Cu atoms, and thus do not
contain intraunit cell information.
The simplest example of a problem that can arise

because of the deficiencies of theory in this regard is that
of the Zn impurity substituting for Cu in Bi2Sr2CaCu2O8

(BSCCO), a cuprate material which cleaves well in
vacuum, leaving atomically smooth surfaces ideal for
STM. The observation of a spectacularly sharp impurity
resonance at the impurity site [7,8,15,16] was an important
local confirmation of unconventional pairing in the cup-
rates. The differential conductance map near the impurity
exhibits a cross-shaped real-space conductance map at

resonance, as expected for a pointlike potential scatterer
in a d-wave superconductor; see Fig. 1(c) [17]. Upon closer
examination, however, the pattern deviates from the
expected theoretical one on the Cu square lattice in some
important respects [18,19]. First, it displays a central
maximum on the impurity site, unlike simple models,
which have a minimum [Fig. 1(a)]. Second, the longer
range intensity tails are rotated 45 degrees from the nodal
directions of the d-wave gap, where such long quasiparticle
decay lengths are expected [18]. There is still no consensus
on the origin of this pattern, which has been discussed in
terms of nonlocal Kondo correlations [20], postulated
extended potentials [21–23], Andreev phase impurities

FIG. 1 (color online). (a) Resonant state real-space BdG
patterns at Ω0 ¼ −3.6 meV as obtained from conventional
BdG calculations in logarithmic scale, (b) xy cut through
continuous 3D LDOS ðx; y; z ≈ 5 Å;Ω0Þ at Ω0 ¼ −3.6 meV
showing strong similarity to the measured conductance maps
(c) reproduced from Ref. [8] rotated to match the orientation in (a)
and (b) and cropped to 11 × 11 elementary cells with the impurity
located at the center.
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[24], and “filter effects,” which assume that the tunneling
process from the surface to the impurity through several
insulating layers involves atomic states in several neigh-
boring unit cells [25,26]. So far, these theories have been
expressed entirely in terms of phenomenological effective
hoppings in the Cu tight-binding model. First principles
calculations for Zn in BSCCO in the normal state [27]
provide some evidence in support of the filter picture, but
until recently it was not possible to include both super-
conductivity and the various atomic wave functions extend-
ing into the barrier layers responsible for the filter.
Nieminen et al. investigated the conductance spectrum
in the BSCCO system using an analysis based on atom-
iclike wave functions [28], and showed that for the
homogeneous system it could be decomposed in a series
of tunneling paths, as postulated by the earlier crude
proposals [25,26]. Using this approach one can explain,
e.g., the spectral line shape at high bias voltage, but
presently it is unclear how this approach applies to
inhomogeneous problems.
The vast amount of STM data on cuprate surfaces have

often been distilled using the quasiparticle interference
(QPI), or Fourier transform STM spectroscopy technique,
one of the most important modern techniques for unrav-
eling the origin of high temperature superconductivity. This
probe is sensitive to the wavelengths of Friedel oscillations
caused by disorder, which then, in principle, contain
information on the electronic structure of the pure system
[29,30]. These wavelengths manifest themselves in the
form of peaks at wave vectors qðωÞ, which disperse with
STM bias V ¼ ω=e and represent scattering processes of
high probability on the given Fermi surface. Many attempts
have been made to calculate these patterns assuming simple
tight-binding band structures, d-wave pairing, and methods
ranging from single-impurity T matrix [31–37] to many-
impurity solutions of the BdG equations [38]. While some
similarities between the calculated patterns, the simplified
so-called “octet model” [31], and experiment have been
reported, there are always serious discrepancies, typically
related not so much to the positions of peaks but rather their
shapes and intensities.
In this Letter we revisit these classic unsolved problems

using a new method called the BdG-Wannier (BdGþW)
approach [39], which combines traditional solutions of the
Bogoliubov–de Gennes equations with the microscopic
Wannier functions obtained from downfolding density
functional theory onto a low-energy effective tight-binding
Hamiltonian. We show that the local density of states
(LDOS) obtained from the continuum Green’s function for
a simple strong nonmagnetic impurity bound state in the
BSSCO material with a d-wave superconducting gap
displays excellent agreement with STM conductance maps
(Fig. 1). We show furthermore that the QPI patterns
obtained from such states, with generically weaker poten-
tials to simulate out-of-plane native defects, agree much

better with experiment than QPI maps obtained in previous
theoretical calculations.
Model.—The starting point of our investigation is

first principles calculations of a BSCCO surface
[Fig. 2(a)] that yield a one band tight-binding lattice model
for the noninteracting electrons cRσ (with Hamiltonian
H0 ¼

P
RR0;σtRR0c†RσcR0σ − μ0

P
R;σc

†
RσcRσ , where tRR0

are hopping elements between unit cells labeled R and
R0 and μ0 is the chemical potential), and a Wannier basis
wRðrÞ with r describing the continuum position. The
Wannier function, obtained from a projected Wannier
function analysis [40], is primarily of Cu-dx2−y2 character
with in-plane oxygen p-orbital contributions, as can be
seen in the isosurface plots for large values of the wave
function, Fig. 2(b). However, it also contains contributions
from atomic wave functions in neighboring elementary
cells, in particular those from the apical oxygen atoms
above the Cu plane, Fig. 2(c). These are the main source of
the large lobes above the neighboring Cu atoms at the
position of the STM tip above the Bi-O plane, Fig. 2(d).
There is no weight, however, directly above the center Cu;
see Fig. 2(d). This can be understood from the fact that the
hybridization of the Cu-dx2−y2 orbital with apical O-p and
Bi-p orbitals in the same unit cell is forbidden by
symmetry. In order to account for correlation effects at
low energies, we use a mass renormalization factor of

FIG. 2 (color online). (a) Elementary cell used in first
principles calculation to obtain the electronic structure on the
Bi2Sr2CaCu2O8 surface. Isosurface plots of the Cu-dx2−y2 Wan-
nier function at (b) 0.05, (c) 0.005, and (d) 0.0002 bohr−3=2.
Arrows indicate nearest-neighbor apical oxygen tails and red and
blue indicate the sign of the Wannier function.
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1=Z ¼ 3 to scale down all hoppings such that the Fermi
velocities approximately match the experimentally
observed values [41] and fix the chemical potential to be
at optimal doping, (n ¼ 0.85).
Next, we solve the inhomogeneous mean field BdG

equations for the full Hamiltonian of a superconductor in
the presence of an impurity H ¼ H0 þHBCS þHimp,
where the d-wave pairing interaction ΓRR0 (details in
the Supplemental Material [42]) enters the calculation
of the superconducting order parameter via ΔRR0 ¼
ΓRR0 hcR0↓cR↑i and gives rise to the second term
HBCS ¼ −

P
R;R0ΔRR0c†R↑c

†
R0↓ þ H:c:, while the third

term is just a nonmagnetic impurity at lattice position
R�, e.g., Himp ¼

P
σV impc

†
R�σcR�σ . From the BdG eigen-

values Enσ and eigenvectors unσ and vnσ we can construct
the usual retarded lattice Green’s function

GσðR;R0;ωÞ ¼
X
n

�
unσR unσ�R0

ω − Enσ þ i0þ
þ vn−σR vn−σ�R0

ωþ En−σ þ i0þ

�
;

ð1Þ

and the corresponding continuum Green’s function [39,51]

Gσðr; r0;ωÞ ¼
X
R;R0

GσðR;R0;ωÞwRðrÞw�
R0 ðr0Þ; ð2Þ

by a simple basis transformation from the lattice operators
cRσ to the continuum operators ψσðrÞ ¼

P
RcRσwRðrÞ,

where the Wannier functions wRðrÞ are the matrix ele-
ments. A similar transformation has been applied previ-
ously to understand neutron [52] and x-ray [53,54] spectra
in the normal state. The continuum Green’s functions can
now be used to either calculate the LDOS ρðr;ωÞ≡
−ð1=πÞImGσðr; r;ωÞ as measured in STS experiments
[43] or obtain the QPI patterns by a Fourier transform.
Before considering an impurity, we note that the basis
transformation in Eq. (2) changes the spectral properties of
the Greens function as it also contains terms that are
nonlocal in the lattice description, e.g., GσðR;R0;ωÞ with
R ≠ R0. This has implications for the continuum LDOS
ρðr;ωÞ, because the sign of ImGσðR;R0;ωÞ is not fixed
such that nonlocal contributions will lead to interference
effects that can suppress or enhance the continuum LDOS
at certain energies. These interference effects between
Wannier functions are enhanced at the large distance from
the surface where the STM tip is located and the Wannier
functions are not confined by the lattice potential. To
illustrate this, we show in Fig. 3(c) the spectral dependence
of the lattice LDOS for a homogeneous calculation which
shows the well-known V shape. Applying the basis trans-
formation by summing only over terms with R ¼ R0, this
behavior is not altered by the continuumLDOS as seen from
the overlaid black curve, while in the full expression the
spectral dependence is qualitatively modified and displays a
clear U-shaped LDOS at low energies. Experimentally

obtained conductances reveal exactly such a U-shaped
behavior in overdoped samples [55,56], and the transition
from V-shaped LDOS to moreU shaped has been observed
with the same tip on samples with spatial inhomogeneous
gaps [4,6,57]. We believe that these differences can be
ascribed to the nonlocal contributions to Eq. (2).
Zn impurity.—A Zn impurity substituting for Cu in

BSCCO produces a strong attractive potential which we
simply model by an on-site potential of V imp ¼ −5 eV,
very similar to the value found in our first principles
calculation (see Supplemental Material [42]). Calculating
the LDOS, we find a sharp in-gap bound state peak around
Ω0 ¼ −3.6 meV, Fig. 3(a). The lattice LDOS from Eq. (1)
shows a minimum at the impurity site and peaks at the NN
sites [see Fig. 1(a) and Refs. [18,19]], precisely opposite
from the experimental conductance map shown in Fig. 1(c).
As pointed out in Refs. [25–28], the problem lies in the
consideration of the Cu lattice sites far from the BiO
surface. The correct quantity to study is the continuum
LDOS ρðr;Ω0Þ at the height of the STM tip, which we
assume to be at z ¼ 5 Å above the BiO surface. The
continuum LDOS obtained using Eq. (2) presented in
Fig. 1(b) indeed shows a maximum on the impurity site,
originating from adding the NN apical oxygen tails of the
Cu Wannier functions adjacent to the Zn site, and longer
range intensity tails that are rotated 45 degrees from the
nodal directions of the d-wave gap, in excellent agreement
with the experimental observation as taken from Ref. [8]
[Fig. 1(c)]. We note a discrepancy on the 3rd site along
the axis, where some of the reported experimental pattern
are more intense than our theoretical result [8,15,16].
However, this peculiar feature seems not to be universal

FIG. 3 (color online). (a) Continuum LDOS at 5 Å above the
BiO surface in the superconducting state with a single Zn
impurity modeled by an onsite −5 eV potential. Shown are
positions directly above Cu atoms far from the impurity (black),
at the impurity position (black, dashed), on the nearest neighbor
position (red [light gray]), and on the next-nearest neighbor
position (blue [dark gray]), calculated using 20 × 20 supercells
with broadening of 1 meV and (b) for a weak impurity scatterer
with V imp ¼ 0.3 eV as used for the QPI analysis. In (c) we
compare the spectral properties of the lattice density of states (red
[light gray], dashed) with the continuum LDOS above a Cu atom
calculated using the diagonal terms of the lattice Greens function
GσðR;R;ωÞ only (black) and the full Green’s function as given
in Eq. (2) (blue [gray], dash dotted); all of them calculated for a
homogeneous superconductor and scale adjusted such that two
curves (black and red [light gray], dashed) exactly overlay.
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in experimental findings and might either be related to the
local disorder environment on the surface of the crystal or
the spatial supermodulation. Finer resolution resonances
reported in Ref. [16] are also extremely similar to our
calculations. While this is crudely the same agreement
reported by filter-type theories [25,26], our calculation
allows many further properties of the pattern to be
recognized and provides a simple explanation of why they
work. As in Ref. [27], the theory allows us to compare the
LDOS in the CuO2 plane to that detected at the surface, but
now also includes the redistribution of spectral weight
(into, e.g., coherence peaks and impurity bound states)
caused by the opening of the superconducting gap.
QPI.—QPI patterns in BSCCO are generated by several

different types of disorder, believed to consist primarily of
out-of-plane defects such as interstitial oxygens or site
switching of Bi and Sr atoms, whose potentials are not
known microscopically. To account for these defects, we
employ a weak potential scatterer on the Cu site with
V imp ¼ 0.3 eV and calculate the lattice LDOS and the
continuum LDOS ρðr;ωÞ, both of which show only
redistribution of spectral weight close to the impurity;
compare Fig. 3(b).
Calculating the Fourier transform of the conductances

gðr;ωÞ ∝ ρðr;ωÞ [44] in order to obtain the conductance
maps jgðq;ωÞj, one is immediately faced with the problem
that the lattice LDOS only contains information on length
scales ≥ a. Thus, the maps only extend in q space to the
first Brillouin zone ½−π=a…π=a�, while the Fourier trans-
form of the continuum LDOS is not restricted in this way.
The Fourier transformed maps have often been analyzed in
terms of the octet model, which predicts a set of seven
scattering vectors connecting hot spots at a given energy
[31]. To compare to our result, we use the quasiparticle
energies of our homogeneous superconductor to derive the
expected QPI pattern. Figure 4 shows the calculated
conductance maps jgðq;ωÞj at ω ¼ 24 meV for (a) the
lattice model (BdG) and (b) the Wannier method
(BdGþW), where the q vectors from the octet model

have been marked by circles. In the BdG-only result, a few
of the spots are reproduced, others are absent and, more
importantly, the large q vectors are not accessible with the
lattice model. In contrast, the map generated from
the Wannier method shows a much better agreement with
the octet model where all spots can be identified and no
artificial spots appear. A full scan of energies to visually
highlight the dispersive features of the spots can be seen
as an animation in the Supplemental Material [42].
Note that it is mathematically not possible to obtain the
BdGþW maps from the corresponding BdG maps since
the former also contain nonlocal contributions, as explained
in Ref. [39].
In order to compare more closely to experiment, we

follow Ref. [14] and simulate the maps of the differential
conductance ratios Zðq;ωÞ as well as the energy integrated
maps ΛðqÞ for both approaches; see definition in the
Supplemental Material [42]. Figures 5(a)–5(c) show the
Z maps of both methods side by side with an experimental
result [17], demonstrating the improvement of our method
(BdGþW) compared to the lattice BdG. Similarly, we
compare maps of the integrated ratio ΛðqÞ: In Fig. 5(g) the
experimental result is shown next to results from 3 different
theoretical methods, (d) T-matrix simulation from
Ref. [14], (e) lattice BdG, and (f) our BdG-Wannier
method. While all three theoretical models obtain large
weight around ð�π;�πÞ, in agreement with experiment,
only our Wannier method is capable of capturing

(a)

BdG BdG+W

(b)ω = 24meV high

low

FIG. 4 (color online). Simulated QPI pattern from conductance
maps: (a) Fourier transform of the lattice LDOS (BdG) and
(b) Fourier transform of the continuum LDOS (BdGþW) at the
same energy ω ¼ 24 meV. Impurity potential for the weak
scatterer V imp ¼ 0.3 eV. The red open symbols indicate the
expected positions of the spots from the octet model.

(a)

BdG

(b)

BdG+W

(c)

experiment

high

low

(d)

T-matrix

(e)

BdG

(f)

BdG+W experiment

(g)

FIG. 5 (color online). (a) QPI Z map obtained from the Fourier
transform of the real conventional space BdG patterns at
ω ¼ 24 meV, (b) QPI Z map obtained from the Fourier transform
of the continuous 3D LDOS ðx; y; z ≈ 5 Å;ωÞ at ω ¼ 24 meV
showing strong similarity to (c) the experimental results repro-
duced from Ref. [14] and rotated to match the orientation in (a)
and (b). For the theoretical calculations a weak impurity scatterer
of V imp ¼ 0.3 eV was used. (d) T-matrix scattering interference
simulation for ΛðqÞ from Ref. [14]; (e) the same obtained from
conventional BdG calculations; (f) Λ map obtained from the
Fourier transform of the continuous 3D LDOS showing strong
similarity to the experimental results (g) reproduced from
Ref. [14]. All q maps are from ½−2π=a…2π=a�.
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simultaneously (1) the lines that extend from these large
spots to the center, (2) the features along the axes between π
and 2π, and (3) the arclike features that trace back the Fermi
surface as in the analysis of Ref. [14].
Conclusions.—In this Letter we have illustrated the

utility of calculating the continuum rather than the lattice
Green’s function to compare with STM data in inhomo-
geneous systems, using a first principles based Wannier
function method. We have focused on the cuprate super-
conductor BSCCO, and calculated the Zn resonant LDOS
as well as QPI patterns, showing in both cases dramatic
improvement compared to experiment relative to traditional
lattice-based BdG analysis. In the case of the Zn impurity,
we have provided a first principles high-resolution theory
of how electrons are transferred from nearest neighbor unit
cells via apical oxygen atoms. In the case of the QPI
patterns, the improved agreement is both with experiment
and with the octet model. This shows that disagreements
with the octet model in the past, primarily spurious arclike
features and missing peaks, are due to the Fourier transform
of the wrong electronic structure information: the lattice
density of states in the CuO2 plane rather than the
continuous density of states at the STM tip position. It
is clear that our results have implications that go beyond the
simple dispersing QPI patterns of a disordered BCS d-wave
superconductor. Any new theory of novel phenomena in the
CuO2 plane that seeks to compare with real space or QPI
data should now be “dressed” with Wannier information, or
risk misidentification of crucial scattering features.
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