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We show that a length scale ξ can be extracted from the spatial correlations of the “steep cliffs” that
appear on a fracture surface. Above ξ, the slope amplitudes are uncorrelated and the fracture surface is
monoaffine. Below ξ, long-range spatial correlations lead to a multifractal behavior of the surface,
reminiscent of turbulent flows. Our results support a unifying conjecture for the geometry of fracture
surfaces: for scales larger than ξ, the surface is the trace left by an elastic line propagating in a random
medium, while for scales smaller than ξ, the highly correlated patterns on the surface result from the
merging of interacting damage cavities.
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After thirty years of research, it is now well established
that fracture surfaces exhibit robust universal fractal stat-
istical properties, first reported in Ref. [1] and recently
reviewed in Ref. [2]. Yet, identifying the physical mech-
anisms that lead to such fractal structures is still an open
problem [3]. The most commonly used approach to
characterize the roughness of fractal cracks is to study
the scaling of the off-plane height variation δh of the
fracture surface with the observation scale δr. The variance
of this distribution shows a scaling law hδh2i ∼ δr2ζ where
ζ is the so-called roughness exponent. For purely brittle
failure, the roughness exponent is reported to be ζ ≈ 0.45
[4,5] whereas for materials that undergo damage during
failure ζ ≈ 0.75 [6,7]. It has been conjectured that these
exponents are the signature of the fracture mechanism
above and below the size of the process zone [8]. However,
standard methods for extracting roughness exponents are
not able to elicit the differences between the fracture
mechanisms in the two regimes.
Here, we propose a different approach for characterizing

crack roughness statistics by focusing on the local slopes of
the fracture surfaces and their spatial correlations. This
allows us to identify unambiguously two scaling regimes:
above some length scale ξ, the slope amplitudes are
uncorrelated and the fracture surface displays a monoaffine
Gaussian behavior with a roughness exponent of ζ ≈ 0.45.
Below ξ, long-range spatial correlations do appear and lead
to a multifractal behavior of the surface. Our findings show
that the presence of two distinct regimes of roughness first
reported in Refs. [9,10] is a generic feature of fracture
surfaces and is reminiscent of the brittle mode of failure that
takes place at large scales and of the damage mechanisms
present in the tip vicinity. In addition, it reveals the subtle
organization of crack roughness at small length scales
δx < ξ, reminiscent of the phenomenology of turbulent
flows [11,12]. In particular, we relate quantitatively the

multifractal spectrum measured at these length scales to
the spatial correlations of the local slopes, and show that the
largest slopes organize into a network of lines or “steep
cliffs” that exhibit universal statistics. This new approach to
the characterisation of fracture surfaces brings insights into
the microscopic mechanisms at play during material failure,
and in particular into the mechanism of damage percolation
taking place at the tip of cracks. It also paves the way to a
postmortem measurement of the size of the crack tip
damaged zone, as a promising tool to infer material
toughness from the statistical analysis of fracture surfaces.
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FIG. 1. Maps of h and ωϵ for the three materials studied. Top:
the height h of the measured fracture surface. Bottom: trans-
formation providing the field ωϵ of local slopes computed at a
scale ϵ. In both cases, the quantiles of the distribution are
represented by a gray hue, the largest values being represented
by the lightest hue. ωϵ is computed at the scales ϵ ¼ 3, 50, and
8 μm for the aluminum, mortar, and ceramics fracture surfaces,
respectively.
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For this work, we have selected three sample materials
that show a wide range of fracture behavior, namely an
aluminum alloy, a mortar, and a sintered glass beads
ceramic. The aluminum alloy specimens are aluminum 4
wt% copper broken under uniaxial mode I tension at
620 °C, in a semi-solid state [13]. The fracture surfaces
are observed with a scanning electron microscope at two tilt
angles and the elevation map is produced from a cross-
correlation surface reconstruction technique. The mortar
fracture surface is obtained by applying four points bending
under controlled displacement conditions to a notched
beam [9]. The topography of the fracture surfaces is
recorded using an optical profilometer. The sintered glass
beads ceramic fracture surfaces are obtained with a tapered
double cantilever beam broken at a constant opening rate
[5]. The roughness of the fractured specimen is measured
using a mechanical stylus profilometer. Those fracture
surfaces are described by their height field hðxÞ, a function
of a two-dimensional in-plane vector x, that is represented
in a gray scale in the top panels of Fig. 1 for each material.
A first natural step in the characterization of the rough-

ness statistics is to compute the distribution of height
fluctuations at different scales. For a given increment δx of
the coordinates in the average fracture plane, we note
pðδhjδxÞ, the probability distribution of a height increment
δh ¼ hðxÞ − hðxþ δxÞ, where the sampling of the distri-
bution is done on all admissible coordinates x. We also note
pðδhjδrÞ, the distribution of δh where the sampling is done
on all admissible x and δx such that jδxj ¼ δr. The
distribution pðδhjδrÞ at different δr is shown in a semi-
logarithmic scale in Fig. 2 for the aluminum, mortar, and
ceramic fracture surface. In this semilogarithmic represen-
tation, the parabolic shape of the distribution obtained for
large values of δr reveals Gaussian statistics. This contrasts
with the distributions observed for smaller values of δr that
display fat tails. This drastic change in the shape of the
distribution demonstrates that a single exponent is insuffi-
cient to describe the variations of the roughness properties
with the scale of observation. Fat tail statistics also suggest
the presence of over-represented large height variations
over small in-plane distances that we would like to analyze
further.

To investigate the spatial distribution of these steep
“cliffs,” we introduce the quantity ωϵðxÞ that measures
the intensity of the local height variations of the fracture
surface on a scale ϵ:

ωϵðxÞ ¼
1

2
log ðhδhðx; δxÞ2ijδxj¼ϵÞ − Ωϵ: ð1Þ

δhðx; δxÞ ¼ hðxþ δxÞ − hðxÞ is the local slope of the
surface in the direction δx, and Ωϵ is chosen such that the
average of ωϵðxÞ over all x is zero. Note that the average of
the slopes is done over a circle of radius ϵ. This new field
ωϵðxÞ has several interesting properties, like isotropy and
robustness to measurement artifacts. The maps of ωϵ

calculated from the off-plane height maps h shown in
Fig. 1 are represented in the lower panels in the same figure.
Strikingly, the largest values of ωϵ (lighter gray), corre-
sponding to the steep cliffs that populate the tails of the
distribution pðδhjδrÞ, are spatially correlated and form a
network of rough lines for the aluminum and the mortar
fracture surfaces. For the ceramic fracture surface, smaller
patterns are visible.
The visually correlated patterns in Fig. 1 can be

quantified by computing the spatial correlations of ωϵ,
which we further average over all directions [14], i.e.,
CϵðδrÞ ¼ hωϵðxÞωϵðxþ δxÞix;jδxj¼δr. This quantity is
shown in Fig. 3 as a function of the distance δr for
different observation scales ϵ; CϵðδrÞ is independent of ϵ
whenever ϵ ≪ δr. For the three materials considered, we
clearly observe two regimes. At small δr, ωϵ shows strong
spatial correlations, which decay logarithmically with
distance, i.e., CϵðδrÞ ∼ −λ logðδr=ξÞ, and extrapolates to
zero for δr ¼ ξ. For larger distances, these correlations are
zero within statistical noise. Both λ and ξ are found to be, to
a good approximation, independent of ϵ provided ϵ ≪ ξ.
Note that λ is a dimensionless number and its value is
empirically found to be quite similar for the three materials
at hand: 0.21� 0.02 (aluminum), 0.15� 0.03 (mortar),
and 0.15� 0.06 (ceramics). The crossover length ξ is found
to be 170� 12, 430� 35, and 50� 9 μm, respectively.
Note that the ratio of ξ to the total map size is 0.06, 0.02,

FIG. 2 (color online). Distribution of height fluctuations
pðδhjδrÞ at various scales δr for the three samples considered.

FIG. 3 (color online). Spatial correlations of ωϵ for the three
materials considered. The correlations are represented for ωϵ

computed at different scales ϵ. The cutoff length ξ is represented
for each case.
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and 0.006, respectively. These last values confirm the visual
impression conveyed by Fig. 1 where large correlated
patterns are observed for aluminum, smaller patterns for
mortar, and even smaller ones for ceramics.
In order to characterize further the two regimes, we now

compute the multifractal spectrum of the height fluctua-
tions, defined through hjδhðx; δxÞjqix;jδxj¼δr ∼ δrζq for the
two ranges of length scales δr < ξ and δr > ξ. Note that the
standard roughness exponent ζ corresponds to q ¼ 2, and
ζ ≡ ζ2=2. For δr > ξ, we observe that ζq=q is fairly
independent of q with a value around 0.45 (see the rhs
of Fig. 4). This corresponds to a monoaffine behavior, i.e. a
scaling that preserves the shape of the full distribution
pðδhjδrÞ of height fluctuations. This is consistent with the
observation of a conserved Gaussian distribution at large
scales (see Fig. 2), and is in agreement with previous
findings [10,16,17]. The monoaffine behavior is very clear
for the mortar and the ceramic fracture surface. For the
aluminum fracture surface, some residual variations of
ζq=q with q are observed; this behavior may be due to the
rather limited extension of the large scale regime δr > ξ.
For δr < ξ, on the other hand, we do observe a significant

variation of ζq=q with q, as reported in former studies
[18,19]. This multiaffine behavior can in fact be traced back
to the logarithmic decay of the spatial correlationsCϵðδrÞ of
the slopes discussed above. Indeed, assuming that ωϵ is a
Gaussian field, and that the local slope can be written as
δhðx; δxÞ ¼ eωϵðxÞsϵðxÞ with jδxj ¼ ϵ, and sϵðxÞ is a long
ranged correlated random variable with unit variance and
hsϵðxÞsϵðxþ δyÞix;jδyj¼δr ∼ jδrj−γ , one derives, adapting
the calculations of Ref. [20] (see the Supplemental
Material [21])

ζq ¼ q

�
H − ðq − 1Þ λ

2

�
with H ≡ ζ1 ¼

�
1 −

γ

2

�
;

ð2Þ

where λ is the slope of the logarithmic correlation defined
above. As seen in the lhs of Fig. 4, where the predictions of
Eq. (2) are represented by straight lines, the slope of the
multifractal spectrum is indeed well captured by this simple
model. We have measured the exponent γ independently,
from the spatial correlations of the signs of the local slopes in
a given direction, with good agreement with the direct
estimate ofH, in particular for aluminum where the scaling
region is large. We therefore claim that fracture surfaces are,
on short length scales, bidimensional realizations of multi-
fractal, persistent Brownian motions. Whereas natural real-
izations of multifractal Brownian motions with H ≤ 1=2
have been reported in turbulent flows (H ≈ 1=3) [11] and in
financial time series (H ≈ 1=2) [20], it is to our knowledge
the first time that a multifractal signal with H > 1=2 has
been observed. The curvature of the multifractal spectrum
seen in Fig. 4 cannot be captured by Eq. (2). This can be
traced back to the assumption that ωϵ is a Gaussian field.
Introducing nontrivial higher order correlations of ωϵ that
also decay logarithmically would add higher order contri-
butions to ζq. However, these higher order correlations are
difficult to measure and we lack statistics to test the model
beyond the second order correlations reported here [22].
To characterize further the spatial organization of the

steepest regions and its robustness towards material speci-
ficity, we study the geometrical properties of the clusters
formed by the largest values of ωϵ, i.e. the ridge of the
cliffs. The field ωϵ is thresholded in order to keep only a
fraction pth. These extreme events organize in a network of
disconnected clusters, as suggested by the bottom of Fig. 1
(see also Fig. 1 of the Supplemental Material [21]). The
extension l of each cluster can be defined using either its
extension along the horizontal or vertical axis, or its radius
of gyration Rg. These three quantities are found to follow
the same scaling S ∼ lD with the number of pixels (or area)
S contained by the cluster, suggesting that these clusters
have a fractal geometry with dimension D ≈ 1.70� 0.15,
again independently of the material considered (see the
Supplemental Material [21]). We show in Fig. 5
the distribution of cluster sizes for different values of the

FIG. 4 (color online). Multifractal spectrum of the fracture
surfaces. The spectrum is computed both below (left) and above ξ
(right). The spectrum predicted for δr < ξ by the multifractal
model of Eq. (2) is represented by a straight line.

FIG. 5 (color online). Cumulative distribution function P>ðSÞ
of cluster size for different thresholds pth. The normalization
factor S0 is the average size of a cluster with a gyration radius
equal to ξ.
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threshold pth. For clusters of scales smaller than ξ, we
observe a power law for the cumulative distribution
function P>ðSÞ ∼ S−τ with exponent τ ≈ 1.0� 0.2 for all
three materials [23]. This means that not only the roughness
exponent ζ but at least three other quantities describing the
statistics of fracture surfaces are universal in the small δr
regime: λ, which describes the spatial correlations of the
amplitude of slopes and the multifractal spectrum, D,
which is the fractal dimension of the ridge of the cliffs
on the fracture surface, and τ, which characterizes the
cluster size distribution (see Table I for a comparison of
their values from one material to another). This extended
universality is important for at least two reasons: (i) it
provides additional support for the conjecture that the
statistics of fracture surfaces is universal, suggesting a
common underlying roughening mechanism, and (ii) it
provides important further constraints that must be abided
by in any theory attempting to explain the universal value
of the roughness exponent ζ ≈ 0.75 [6,7].
What is the physical interpretation of these observations?

We believe that the presence of spatially correlated steep
cliffs on short length scales δr < ξ is a strong indication
that at these scales, fracture proceeds through the nucle-
ation and coalescence of microcracks or damage cavities, as
previously conjectured [24–27]. As elaborated in the
context an estimate of planar cracks [28,29], the scale ξ
therefore provides the extent lpz of the fracture process
zone [30]. It also reflects the material toughness, since
KIc ≃ σc

ffiffiffiffiffiffiffi
lpz

p
, where σc is the typical failure stress under

tension [31]. Our methodology based on the correlation of
slopes measured on the fracture surfaces therefore paves the
way for a postmortem characterization of material tough-
ness from the statistical analysis of their fragments [32].
Although this is still an open theoretical issue, the

percolation of power law distributed microcracks should
provide a rationale for the value of the small scale rough-
ness exponent ζ ≈ 0.75. Discontinuities along the fracture
surface are the stigma of these coalescing cavities [33] and
this picture should be made compatible with values of the
new, universal statistical indicators reported here, namely λ,
D, and τ. Only on large length scales δr > ξ does the notion
of a continuous fracture line make sense. Continuum
fracture mechanics based models describing crack fronts
as an elastic interface driven in a random medium
[8,17,26,34–38] predict monoaffine Gaussian fracture sur-
faces with ζ ≈ 0.4 [8,17], indeed compatible with our
findings.
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