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We provide a unified ab initio description of the 6Li ground state and elastic scattering of deuterium (d)
on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence
of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying
spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic
D- to S-state ratio of the 6Li wave function in the dþ α configuration of −0.027, in agreement with a
determination from 6Li-4He elastic scattering, but overestimates the excitation energy of the 3þ state by
350 keV. The bulk of the computed differential cross section is in good agreement with data. These results
endorse the application of the present approach to the evaluation of the 2Hðα; γÞ6Li radiative capture,
responsible for the big-bang nucleosynthesis of 6Li.
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X
λ

cλj6Li λJπTi þ
XZ
ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJπαα Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ�ðJπTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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energy configuration. The index ν collects the quantum
numbers f4He λαJπαα Tα;

2H λdJ
πd
d Td; slg associated with

the continuous basis states of Eq. (2), and the operator
(with Pi;j exchanging particles i and j),

Aν ¼
1ffiffiffiffiffi
15

p
�
1 −

X4
i¼1

X6
j¼5

Pi;j þ
X4
i<j¼1

Pi;5Pj;6

�
;

ensures its full antisymmetrization. Expansion (1) is
further orthonormalized to account for the overcomplete-
ness of the basis [15]. Finally, the unknown discrete
coefficients cλ and continuous amplitudes of relative
motion γνðrÞ are obtained by solving the six-body
Schrödinger equation in the Hilbert space spanned by
the basis states j6Li λJπTi and AνjΦJπT

νr i [15]. The bound
state and the elements of the scattering matrix are then
obtained from matching the orthogonalized expansion (1)
with the known asymptotic behavior of the wave function
using an extension of the microscopic R-matrix
theory [22,23].
The deuteron is only bound by 2.224 MeV. For relative

kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the virtual
scattering to the energetically closed 4Heþ pþ n channels
accounts for the distortion of the projectile. Here we
address this by discretizing the continuum of 2H in the
3S1 − 3D1, 3D2, and 3D3 − 3G3 channels identified in our
earlier study of Ref. [14]. At the same time, the first fifteen
(all energetically relevant positive- and negative-parity
states up to J ¼ 3) square-integrable six-body eigenstates
of 6Li also contribute to the description of the deuteron
distortion. More importantly, they address the swelling of
the α particle, of which we can (computationally) afford to
include only the g.s. This was demonstrated in Ref. [16],
where proton-4He scattering phase shifts were shown to be
rather insensitive to the inclusion of 4He excitations, once
5Li square-integrable states were added to the description.
The typical convergence behavior of our computed d-4He
phase shifts with respect to the number of deuteron
pseudostates (or d⋆, with Ed⋆ > 0) included in Eq. (2) is
shown in Fig. 1. Stable results are found with as little as
three pseudostates per channel, less than half than in the
more limited study of Ref. [14], lacking the coupling of
square-integrable 6Li eigenstates. Nonetheless, above the
2H breakup threshold, our approach is approximated and a
rigorous treatment would require the more complicated task
of including three-cluster basis states [24] in the ansatz
of Eq. (1).
The treatment of 3N forces within the NCSMC formal-

ism to compute deuteron-nucleus collisions involves major
technical and computational challenges. The first is
the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven

independent 3N-force terms, five of which involve
operations on three to four nucleons of the target, e.g.,
hΦJπT

ν0r0 jP3;5P4;6V3N
123jΦJπT

νr i, with V3N
123 the 3N interaction

among particles 1,2, and 3. To calculate these contributions,
we need the three- and four-nucleon densities of the target
[26]. An additional difficulty is represented by the exor-
bitant number of input 3N-force matrix elements (see Fig. 1
of Ref. [27]), which we include up to a maximum three-
nucleon HO model space of seventeen major shells. The
h6Li λJπTjV3N

346jΦJπT
νr i and h6Li λJπTjV3N

456jΦJπT
νr i couplings

between discrete and continuous states are comparatively
less demanding.
Results.—We adopt a Hamiltonian based on the chiral

N3LONN interaction of Ref. [25] and the N2LO 3N force
of Ref. [28], constrained to provide an accurate description

FIG. 1 (color online). Computed d-4He S- and D-wave phase
shifts at Nmax ¼ 8 and ℏΩ ¼ 20 MeV, obtained with fifteen
square-integrable 6Li eigenstates and up to seven 2H pseudostates
in each of the 3S1 − 3D1, 3D2, and 3D3 − 3G3 channels. The two-
body part of the similarity renormalization group (SRG) evolved
N3LONN potential [25] (NN-only) with Λ ¼ 2.0 fm−1 was
used.

FIG. 2 (color online). S-, 3P0-, and D-wave d-4He phase shifts
computed with the NN-only, NN þ 3N-ind, and NN þ 3N
Hamiltonians (lines) compared to those of the R-matrix analyses
of [34,35] (symbols). More details in the text.
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of the A ¼ 2 and 3 [29] systems. These interactions are
additionally softened by means of a unitary transformation
that decouples high- and low-momentum components,
working within the similarity renormalization group
(SRG) method [27,30–33]. To minimize the occurrence
of induced four-nucleon forces, we work with the SRG
resolution scale Λ ¼ 2.0 fm−1 [26,32,33]. All calculations
are carried out, including the first fifteen Jπ ≤ 3� (of which
two 1þ and 2þ, and one 3þ) discrete eigenstates of the 6Li
system and continuous d-4Heðg:s:Þ states with up to seven
deuteron pseudostates in the 3S1− 3D1, 3D2, and 3D3− 3G3

channels. Similar to our earlier study performed with a
softer NN interaction but in a model space spanned only by
the continuous basis states of Eq. (2) [14], we approach
convergence for the HO expansions at Nmax ¼ 10ð11Þ for
positive (negative) parity channels. We adopt the HO
frequency of 20 MeV around which the 6Li g.s. energy

calculated within the square-integrable basis of the NCSM
becomes nearly insensitive to ℏΩ [13].
In Fig. 2, we compare our computed d-4He S-, 3P0-, and

D-wave phase shifts with those of the R-matrix analyses of
Refs. [34,35]. The results based on the two-body part of the
SRG-transformed NN force (NN-only) resemble those of
Ref. [14]. Once the SRG unitary equivalence is restored via
the induced 3N force (NN þ 3N-ind), the resonance
centroids are systematically shifted to higher energies.
By contrast, the agreement with data is much improved
when the initial chiral 3N force is also included
(NN þ 3N). In particular, the splitting between the 3D3

and 3D2 partial waves is comparable to experiment.
In Fig. 3, the resonance centroids and widths extracted

[36] from the phase shifts of Fig. 2 (shown on the right) are
compared with experiment as well as with more traditional
approximated energy levels (shown on the left) obtained
within the NCSM by treating the 6Li excited states as bound
states. In terms of excitation energies relative to the g.s., in
both calculations (i.e., with or without continuum effects)
the chiral 3N force affects mainly the splitting between the
3þ and 2þ states, and to a lesser extent the position of the first
excited state. Sensitivity to the chiral 3N force is also seen in
thewidths of theNCSMC resonances,which tend to become
narrower (in closer agreement with experiment) when this
force is present in the initial Hamiltonian. Overall, the
closest agreement with the observed spectrum is obtained
with the NN þ 3N Hamiltonian working within the
NCSMC, i.e., by including the continuum degrees of free-
dom. Incidentally, we note that the NN-only Hamiltonian
(not shown in Fig. 3) yields g.s. and 3þ energies (with
respect to the computed dþ 4He threshold) close to the
NN þ 3N results, e.g. −1.62 and 1.24 MeV, respectively,
within the NCSMC. However, the splitting between 2þ and
3þ is smaller. Compared to the best (Nmax ¼ 12) NCSM
values, all resonances are shifted to lower energies com-
mensurately with their distance from the breakup threshold.
For the 3þ, which is a narrow resonance, the effect is not
sufficient to correct for the slight overestimation in excita-
tion energy already observed in the NCSM calculation. This
and the ensuing underestimation of the splitting between
the 2þ and 3þ states point to remaining deficiencies in the

TABLE I. Absolute 6Li g.s. energy, S- (C0) and D-wave (C2) asymptotic normalization constants and their ratio using the NN þ 3N
Hamiltonian compared to experiment. Also shown is the sum of 4He and 2H g.s. energies, Eα þ Ed. Indicated in parenthesis is the Nmax
value of the respective calculation.

Ground-state properties NCSM (10) NCSM (12) NCSM (∞) [37] NCSMC (10) Experiment

E6Li [MeV] −30.84 −31.52 −32.19ð1Þ −32.01 −31.994 [1,40]
C0 [fm−1=2] 2.695 2.91(9) [39] 2.93(15) [41]
C2 [fm−1=2] −0.074 −0.077ð18Þ [39]
C2=C0 −0.027 −0.025ð6Þð10Þ [39] 0.0003(9) [38]
Eα þ Ed [MeV] −30.52 −30.58 −30.61ð4Þ −30.52 −30.520

FIG. 3 (color online). Ground-state energy and low-lying 6Li
positive-parity T ¼ 0 resonance parameters extracted [36] from
the phase shifts of Fig. 2 (NCSMC) compared to the evaluated
centroids and widths (indicated by Γ) of Ref. [1] (Expt.). Also
shown on the left-hand side are the best (Nmax ¼ 12) and
extrapolated [37] NCSM energy levels. The zero energy is set
to the respective computed (experimental) dþ 4He breakup
thresholds. Absolute g.s. energies can be found in Table I.
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adopted 3N force model, particularly concerning the
strength of the spin-orbit interaction.
The inclusion of the dþ 4He states of Eq. (2) results also

in additional binding for the 1þ ground state. This stems
from a more efficient description of the clusterization of 6Li
into dþ α at long distances, which is harder to describe
within a finiteHOmodel space, or—more simply—from the
increased size of the many-body model space. Indeed, as
shown in Fig. 3 and inTable I for the absolute value of the 6Li
g.s. energy, extrapolating to Nmax → ∞ [37] brings the
NCSM results into good agreement with the NCSMC, for
bound states and narrow resonances. However, onlywith the
latter do the wave functions present the correct asymptotic,
which for the g.s. are Whittaker functions. This is essential
for the extraction of the asymptotic normalization constants
and a future description of the 2Hðα; γÞ6Li radiative capture
[5]. The obtained asymptotic D- to S-state ratio is not
compatiblewith the near-zero value of Ref. [38], but rather is
in good agreement with the determination of Ref. [39],
stemming from an analysis of 6Liþ 4He elastic scattering.
Next, in Figs. 4(a) and 4(b), respectively, we compare the

2Hðα; dÞ4He deuteron elastic recoil and 4Heðd; dÞ4He
deuteron elastic scattering differential cross sections com-
puted using the NN þ 3N Hamiltonian to the measured
energy distributions of Refs. [7–9,42–45]. Aside from the
position of the 3þ resonance, the calculations are in fair
agreement with experiment, particularly in the low-energy
region of interest for the big-bang nucleosynthesis of 6Li,
where we reproduce the data of Besenbacher et al. [42] and
Quillet et al. [8]. The 500 keV region below the resonance
in Fig. 4(a) is also important for material science, where the
elastic recoil of deuterium knocked by incident α particles
is used to analyze the presence of 2H. At higher energies,
near the 2þ and 1þ resonances, the computed cross section
at the center-of-mass scattering angle of θd ¼ 164°

reproduces the data of Galonsky et al. [44] and Mani et al.
[45], while we find slight disagreement with the data of
Ref. [9] in the elastic recoil configuration at the laboratory
angle of φd ¼ 30°. At even higher energies, the calculated
cross section of Fig. 4(b) lies above the measured one. This
is likely related to the fact that the 1þ2 state is too broad. The
overall good agreement with experiment is also corrobo-
rated by Fig. 4(c), presenting 4Heðd; dÞ4He angular dis-
tributions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident
energies. In particular, the theoretical curves reproduce the
data at 2.93 and 6.96 MeV, while some deviations are
visible at the two higher energies, in line with our previous
discussion. Nevertheless, in general, the present results
with 3N forces provide a much more realistic description of
the scattering process than our earlier study of Ref. [14].
Finally, we expect that an Nmax ¼ 12ð13Þ calculation
(currently out of reach) would not significantly change
the present picture, particularly concerning the narrow 3þ
resonance. Indeed, much as in the case of the g.s. energy,
here the NCSMC centroid is in good agreement with the
NCSM extrapolated value, 0.99(9) MeV.
Conclusions.—Wepresentedanapplicationof theab initio

NCSMC formalism to the description of deuteron-nucleus
dynamics. We illustrated the role of the chiral 3N force and
continuous degrees of freedom in determining the bound-
state properties of 6Li and d-4He elastic scattering observ-
ables. The computed g.s. energy is in excellent agreement
with experiment, and our dþ α asymptotic normalization
constants support a nonzero negative ratio of D- to S-state
components for 6Li. We used deuterium backscattering and
recoil cross-section data of interest to ion beam spectroscopy
to validate our scattering calculations and found good
agreement at low energy in particular. The overestimation
by about 350 keVof the position of the 3þ resonance is an
indication of remaining deficiencies of the Hamiltonian
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FIG. 4 (color online). Computed (a) 2Hðα; dÞ4He laboratory-frame and (b) 4Heðd; dÞ4He center-of-mass frame angular differential
cross sections (lines) using the NN þ 3N Hamiltonian at the deuteron laboratory and c.m. angles of, respectively, φd ¼ 30°
and θd ¼ 164° as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data (symbols) from
Refs. [7–9,42–45]. (c) Calculated (lines) and measured (symbols) center-of-mass angular distributions at Ed ¼ 2.93; 6.96; 8.97 [46], and
12 MeV [47] are scaled by a factor of 20,5,2, and 1, respectively. All positive- and negative-parity partial waves up to J ¼ 3 were
included in the calculations.
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employed here. This work sets the stage for an ab initio study
of the 2Hðα; γÞ6Li radiative capture, and is a stepping stone in
the calculation of the deuterium-tritium fusionwith the chiral
NN þ 3N Hamiltonian, currently in progress.
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