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We introduce a new class of scalar-tensor theories of gravity that extend Horndeski, or “generalized
Galileon,” models. Despite possessing equations of motion of higher order in derivatives, we show that the
true propagating degrees of freedom obey well-behaved second-order equations and are thus free from
Ostrogradski instabilities, in contrast to standard lore. Remarkably, the covariant versions of the original
Galileon Lagrangians—obtained by direct replacement of derivatives with covariant derivatives—belong to
this class of theories. These extensions of Horndeski theories exhibit an uncommon, interesting
phenomenology: The scalar degree of freedom affects the speed of sound of matter, even when the
latter is minimally coupled to gravity.
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The discovery of the present cosmological acceleration has
spurred the exploration of gravitational theories that could
account for this effect. Many extensions of general relativity
(GR) are based on the inclusion of a scalar degree of freedom
(DOF) in addition to the two tensor propagatingmodes ofGR
(see, e.g., [1] for a review). In this context, a recent important
proposal is the so-called Galileon models [2], with
Lagrangians that involve second-order derivatives of the
scalar field and lead, nevertheless, to equations of motions
of second order. Such a property guarantees the avoidance of
Ostrogradski instabilities, i.e., of the ghostlike DOF that are
usually associatedwith higher time derivatives (see, e.g., [3]).
Initially introduced in Minkowski spacetime, Galileons

have then been generalized to curved spacetimes [4–6],
where they turn out to be equivalent to a class of theories
originally constructed by Horndeski 40 years ago [7].
Today, Horndeski theories, which include quintessence,
k-essence, and fðRÞmodels, constitute the main theoretical
framework for scalar-tensor theories, in which cosmologi-
cal observations are interpreted. The purpose of this Letter
is to show that this framework is not as exhaustive as
generally believed and can in fact be extended to include
new Lagrangians. Indeed, having equations of motion of
second order in derivatives—while indeed sufficient—is
not necessary to avoid Ostrogradski instabilities, as already
pointed out in, e.g., Refs. [8,9]. The theories beyond
Horndeski that we propose lead to distinct observational
effects and are thus fully relevant for an extensive com-
parison of scalar-tensor theories with observations.
The model.—The theories that we consider here can be

viewed as a broader generalization of the Galileons to
curved spacetimes. They are described by linear combina-
tions of the Lagrangians

Lϕ
2 ≡G2ðϕ; XÞ; ð1Þ

Lϕ
3 ≡G3ðϕ; XÞ□ϕ; ð2Þ

Lϕ
4 ≡G4ðϕ; XÞ ð4ÞR − 2G4;Xðϕ; XÞð□ϕ2 − ϕμνϕμνÞ

þ F4ðϕ; XÞϵμνρσϵμ0ν0ρ0σϕμϕμ0ϕνν0ϕρρ0 ; ð3Þ

Lϕ
5 ≡G5ðϕ; XÞ ð4ÞGμνϕ

μν

þ 1

3
G5;Xðϕ; XÞð□ϕ3 − 3□ϕϕμνϕ

μν þ 2ϕμνϕ
μσϕν

σÞ
þ F5ðϕ; XÞϵμνρσϵμ0ν0ρ0σ0ϕμϕμ0ϕνν0ϕρρ0ϕσσ0 ; ð4Þ

which depend on a scalar field ϕ (and its derivatives
ϕμ ≡∇μϕ;ϕμν ≡∇ν∇μϕ), on X ≡ gμνϕμϕν, and on a
metric gμν with respect to which matter is assumed to be
minimally coupled; ϵμνρσ is the totally antisymmetric Levi-
Civita tensor, and a comma denotes a partial derivative with
respect to the argument. Horndeski theories correspond to a
subset of the above theories, subjected to the restricting
conditions

F4ðϕ; XÞ ¼ 0; F5ðϕ; XÞ ¼ 0; ð5Þ

which ensure that the equations of motion (EOM) are
second order. By contrast, we allow here arbitrary func-
tions F4 and F5, which means that our theories contain
two additional free functions with respect to the
Horndeski ones.
The new terms proportional to F4 and F5 are, respec-

tively, the covariant version of the original quartic and
quintic Galileon Lagrangians proposed in Ref. [2]. This
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guarantees second-order dynamics for the scalar field in the
absence of gravity. When the metric is dynamical, the EOM
involve up to third-order derivatives in these extended
theories, but this does not imply the presence of unwanted
extra DOF, as we show below.
Arnowitt-Deser-Misner (ADM) formulation.—In cos-

mology, where the scalar field gradient is timelike, it is
convenient to perform an ADM decomposition of space-
time, with metric

ds2 ¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; ð6Þ
by choosing the uniform scalar field (ϕ ¼ const) hyper-
surfaces as constant-time hypersurfaces. The above
Lagrangians then have a very simple form in terms of
the intrinsic and extrinsic 3D curvature tensors of the
spatial slices, Rij and Kij, as well as the lapse function N.
This reformulation uses the unit vector nμ ≡ −ϕμ=

ffiffiffiffiffiffiffi
−X

p
normal to the uniform ϕ hypersurfaces, in terms of
which the extrinsic curvature is given by Kμν ≡ ðgσμþ
nσnμÞ∇σnν. We also make use of the Gauss-Codazzi
relations to relate the 4D curvature to the 3D one.
After cumbersome but straightforward manipulations,

one finds that any combination of the Lϕ
a leads to an ADM

Lagrangian density of the form L ¼ ffiffiffiffiffiffi−gp P
aLa, with

L2 ¼ A2;

L3 ¼ A3K;

L4 ¼ A4K2 þ B4R;

L5 ¼ A5K3 þ B5Kij½Rij − hijR=2�; ð7Þ

where K ≡ hijKij, R≡ hijRij, and the quantities K2 and
K3 are, respectively, quadratic and cubic combinations of
Kij ≡ ð _hij −DiNj −DjNiÞ=ð2NÞ (where Di is the covar-
iant derivative of hij), explicitly defined as

K2 ≡ K2 − KijKij; ð8Þ

K3 ≡ K3 − 3KKijKij þ 2KijKikKj
k: ð9Þ

The coefficients in Eq. (7) are related to the original
functions in Eqs. (1)–(4) by

A2 ¼ G2 − ð−XÞ1=2
Z

G3;ϕ

2
ffiffiffiffiffiffiffi
−X

p dX; ð10Þ

A3 ¼ −
Z

G3;X

ffiffiffiffiffiffiffi
−X

p
dX − 2

ffiffiffiffiffiffiffi
−X

p
G4;ϕ; ð11Þ

A4 ¼ −G4 þ 2XG4;X þ X
2
G5;ϕ − X2F4; ð12Þ

B4 ¼ G4 þ
ffiffiffiffiffiffiffi
−X

p Z
G5;ϕ

4
ffiffiffiffiffiffiffi
−X

p dX; ð13Þ

A5 ¼ −
ð−XÞ3=2

3
G5;X þ ð−XÞ5=2F5; ð14Þ

B5 ¼ −
Z

G5;X

ffiffiffiffiffiffiffi
−X

p
dX: ð15Þ

In this ADM formulation, these functions of ϕ and X can
also be seen as functions of t and N via the relations ϕ ¼
ϕ0ðtÞ and X ¼ − _ϕ2

0ðtÞ=N2.
By using Eqs. (12)–(15), the Horndeski conditions (5)

translate into

A4 ¼ −B4 þ 2XB4;X; A5 ¼ −XB5;X=3: ð16Þ

Hamiltonian analysis.—In general, higher derivative
theories are pathological, because they lead, according to
Ostrogradski’s theorem, to extra DOF that behave like
ghosts. Here we show, by resorting to a simple counting of
the number of DOF in the Hamiltonian formalism, that the
theories (7) do not contain more than 3 degrees of freedom.
Thus, there is no room for an extra DOF in addition to the
scalar DOF initially built in and the two tensor modes
similar to those of GR.
The Hamiltonian is obtained from the Lagrangian via a

Legendre transform

H ¼
Z

d3x½πij _hij − L�; ð17Þ

where the πij are the conjugate momenta associated with
the hij, defined by

πij ¼ ∂L
∂ _hij

: ð18Þ

Ignoring L5 for simplicity, one can easily invert the above
relation to express _hij as a function of πij and obtain the
explicit Hamiltonian, which can be written in the form

H ¼
Z

d3x½NH0 þ NiHi�; ð19Þ

with

H0 ≡ −
ffiffiffi
h

p �
A2 −

3A2
3

8A4

þ A3π

2
ffiffiffi
h

p
A4

þ B4R

þ 1

2hA4

ð2πijπij − π2Þ
�
; ð20Þ

Hi ≡ −2Djπ
j
i: ð21Þ

We leave aside the uninteresting case A4 ¼ 0, which does
not contain propagating tensor DOF.
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In GR, variation with respect to N and Ni yields,
respectively, the Hamiltonian constraint H0 ¼ 0 and the
momentum constraints Hi ¼ 0. These constraints are, in
Dirac’s terminology, first class and eventually eliminate
eight out of the initial ten degrees of freedom (see, e.g.,
[10]). In our case, the gauge invariance under spatial
diffeomorphisms is preserved, leading to first-class con-
straints analogous to the momentum constraints of GR and
eliminating six DOF (see [11] for details). However,
variation with respect to N now gives the constraint
~H0 ≡H0 þ N∂H0=∂N ¼ 0, which is in general second
class, instead of first class. This can be understood as a
consequence of the scalar field that fixes the preferred
slicing and thus breaks the full spacetime diffeomorphism
invariance. This entails the elimination of only one DOF
(instead of two in GR). Note that this reasoning crucially
depends on the absence of _N from the Lagrangians (7),
which is guaranteed by the specific form of the new terms
proportional to F4 and F5 introduced in Eqs. (3) and (4).
The final number of physical DOF is therefore three, which
correspond to the two standard tensor modes plus a scalar
mode, as will be clear from the linear analysis below.
When L5 is included, the full Hamiltonian cannot be

written in closed form, because one cannot invert explicitly
the relation (18), even if the inversion is in general well
defined locally [11]. For this reason, we have not been able
to compute explicitly the constraint algebra in the full case.
However, our counting depends only on the nature of the
constraints. Since the full Hamiltonian is, by construction,
invariant under spatial diffeomorphism, the associated
constraints should remain first class and thus eliminate
six DOF as before. Taking into account the other con-
straints, one thus expects at most three DOF and, therefore,
the absence of any ghostly extra DOF. The counting is also
similar if one includes matter, with the matter DOF adding
to the three from the gravitational sector. Finally, note that
our analysis could also be applied almost straightforwardly
to general ADM Lagrangians invariant under spatial diffeo-
morphisms involving arbitrary combinations of the extrinsic
and intrinsic curvature tensors and their spatial derivatives.
However, such a wider set of possibilities is not necessarily
a covariant extension of Galileons as Eqs. (1)–(4).
Covariant formulation.—The above Hamiltonian analy-

sis is based on our ADM reformulation of the theories and
requires the gradient of the scalar field to be timelike so that
uniform scalar-field hypersurfaces are spacelike. Although
this is the case in cosmology, which is the main motivation
to study these models, one can wonder whether our
findings are still valid for more general situations.
For simplicity, let us consider theories involving up to

Lϕ
4 , but not L

ϕ
5 . We have found that the analysis of their

equations of motion can be greatly simplified via the use of
disformal transformations. Indeed, the gravitational action
with the Lagrangians (1)–(3) reexpressed in terms of ϕ and
of the new metric

~gμν ¼ gμν þ Γðϕ; XÞ∂μϕ∂νϕ; ð22Þ

with

Γ ¼
Z

F4

G4 − 2XG4X þ X2F4

dX; ð23Þ

turns out to belong to the Horndeski class. This means that
the equations of motion obtained by varying the action with
respect to the metric ~gμν are second order. By using this
property and by combining the (third-order) equations of
motion for ϕ and gμν derived from the full action (including
that of matter minimally coupled to gμν), one can explicitly
replace higher-order time derivatives of ϕ by at most
second-order time derivatives (see details in Ref. [11]
and related ideas in Ref. [9]). This shows that the equations
of motion can be reduced to second order in time
derivatives and do not require additional initial conditions,
thus extending the conclusions of our Hamiltonian analysis
to general configurations. The same method applies to
theories without Lϕ

4 , although one cannot simultaneously
map Lϕ

4 and Lϕ
5 to Horndeski for general combinations of

these Lagrangians.
Quadratic action.—The above arguments exclude the

presence of extra DOF, but one still needs to check that the
remaining scalar and tensor DOF are not themselves
ghostlike, for which we need to calculate the quadratic
action for perturbations of the propagating DOF and
make sure that the kinetic terms have the right signs. We
perform this calculation around a spatially flat Friedmann-
Lemaître-Robertson-Walker metric and follow the general
procedure developed in Ref. [12] for the specific
Lagrangian L given by Eq. (7). Namely, we expand at
second order the action S ¼ R

d4x
ffiffiffiffiffiffi−gp

L, using ζ gauge,
i.e., hij ¼ a2ðtÞe2ζðδij þ γijÞ, γii ¼ 0 ¼ ∂iγij, and splitting
the shift as Ni ¼ ∂iψ þ Ni

V , ∂iNi
V ¼ 0. Because of the

particular structure of the terms in Eqs. (8) and (9), the
Lagrangian (7) satisfies the criteria obtained in Ref. [12]
that ensure that the linear equations of motion contain no
more than two spatial derivatives. In particular, terms
proportional to ð∂2ψÞ2 cancel up to a total derivative.
By varying the action with respect to Ni, one obtains the
momentum constraints, whose solution is Ni

V ¼ 0 and

N ¼ 1þD _ζ; D≡ 4A4

2Hð2A4 þA0
4Þ −A0

3

: ð24Þ

Above and in the following, a dot and a prime, respectively,
denote derivative with respect to t and N. Furthermore, we
use the new functions
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A2 ≡ A2 þ 3HA3 þ 6H2A4 þ 6H3A5;

A3 ≡ A3 þ 6HA4 þ 12H2A5;

A4 ≡ A4 þ 3HA5;

B4 ≡ B4 þ
1

2N
_B5jN¼1 − ðN − 1ÞHB0

5

2
: ð25Þ

After substitution of Eq. (24) into the action, all the terms
containing ψ drop out, up to boundary terms [13]. After
some manipulations, the quadratic action becomes Sð2Þ ¼R
d4xa3Lð2Þ with

Lð2Þ ¼ α_ζ2 − β
ð∂iζÞ2
a2

þ 1

4

�
−A4 _γ

2
ij − B4

ð∂kγijÞ2
a2

�
; ð26Þ

where the functions α and β are defined as

α≡
�ðN2A0

2Þ0
2

− 3HA0
3 þ 6H2ðNA4Þ0

�
D2 − 6A4;

β≡ −2B4 þ
2

a
d
dt

½aDðNB4Þ0�; ð27Þ

evaluated on the background (N ¼ 1). As expected from
the previous Hamiltonian analysis, the quadratic
Lagrangian (26) does not contain higher time derivatives.
Moreover, for α > 0 and −A4 > 0 we ensure that the
propagating DOF are not ghostlike. Gradient instabilities
are avoided for c2s ≡ β=α > 0 and c2γ ≡ −B4=A4 > 0.
Coupling with matter.—In cosmology, the power of

gravity at large scales—and its irrelevance at short dis-
tances—is well illustrated by the Jeans phenomenon. A
matter overdensity δρm of a given Fourier mode k evolves,
schematically, as

ð∂2
t þ c2mk2 − gravityÞδρm ¼ 0: ð28Þ

In the above, c2m is the square of the speed of sound,
proportional to the pressure perturbation: c2m ¼ δpm=δρm.
For c2m > 0, the positive sign in front of the k2 term
guarantees an oscillating solution at sufficiently short
distances, where the overdensity is supported by its own
pressure gradients. The last term in parentheses stands for
k-independent contributions roughly of Hubble size ∼H2.
Only at distances larger than ∼cmH−1 do these terms
dominate, leading to gravitational (Jeans) instability. This
well-known feature of standard cosmological perturbation
theory holds true at small scales also in most modified
gravity models—say, for definiteness, in all Horndeski
theories as long as matter fields are minimally coupled to
the metric.
The extension of Horndeski theories that we are propos-

ing provides a counterexample to such an apparently
universal behavior, even when matter is minimally coupled
to the metric tensor. Let us illustrate this with a matter scalar

field σ (not to be confused with the dark energy field ϕ),
described by the k-essence type action,

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
PðY; σÞ; Y ≡ gμν∂μσ∂νσ; ð29Þ

with sound speed c2m ≡ P;Y=ðP;Y − 2_σ20P;YYÞ. One can then
repeat the procedure discussed earlier in order to obtain the
quadratic action for the scalar fluctuations expressed in
terms of ζ, N, ψ , and the matter field perturbation δσ.
Making use of the momentum constraints, the final
Lagrangian expressed in terms of ζ and of the gauge-
invariant variable Qσ ≡ δσ − ð _σ0=HÞζ reads

Lð2Þ ¼
�
α −

c2mg2t
4P;Y

�
_ζ2 −

�
β þ P;Y _σ

2
0

H2
−

_σ0gs
H

� ð∂iζÞ2
a2

−
P;Y

c2m

�
_Q2
σ − c2m

ð∂iQσÞ2
a2

�
þ gt _ζ _Qσ þ gs

∂iζ∂iQσ

a2

þ � � � ; ð30Þ

where gs ≡ −c2mgt þ 2_σ0P;YΔ, with

gt≡2_σ0P;Y

c2m

�
D−

1

H

�
; Δ≡D

�
1þðNB4Þ0

A4

�
; ð31Þ

and we have included only the terms quadratic in time or
space derivatives, the other terms (in the ellipses) being
irrelevant for the following discussion. The dispersion
relations for the propagating DOF can be obtained by
requiring that the determinant of the matrix of the kinetic
and spatial gradient terms vanishes, which yields

ðω2 − c2mk2Þðω2 − ~c2sk2Þ ¼
ðρm þ pmÞ

2α
Δ2ω2k2;

~c2s ≡ ½β − ð1=2Þðρm þ pmÞðD − ΔÞ2�=α; ð32Þ

where we have used 2_σ20P;Y ¼ −ðρm þ pmÞ. From this
equation, one derives the two dispersion relations
ω2 ¼ c2�k

2. In Horndeski theories, Δ ∝ A4 þ ðNB4Þ0 ¼ 0

because of Eq. (16), and we thus find that, despite the
couplings in the action between the time and space
derivative of ζ and Qσ, the matter sound speed is
unchanged as a consequence of the special relation
gs ¼ −c2mgt. This is no longer the case in our non-
Horndeski extensions, where Δ ≠ 0 and the two couplings
are “detuned.” This remarkable difference between
Horndeski and non-Horndeski theories was not pointed
out in the recent work in Ref. [14], which also extends our
previous analysis [12] to compute the quadratic action of
dark energy coupled to a scalar field.
This unusual behavior can also be seen by writing the

perturbed EOM derived from the manifestly covariant
Lagrangian for ϕ, together with Eq. (28). On sufficiently
small scales, we find (see [11] for details)
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ð∂2
t þ ~c2sk2Þδϕ − Cϕ

_ϕ∂tδρm ≈ 0; ð33Þ

ð∂2
t þ c2mk2Þδρm − Cmk2∂tðδϕ= _ϕÞ ≈ 0; ð34Þ

with

Cm ≡ Δðρm þ pmÞ
Δ −D

; Cϕ ≡ −
ΔðΔ −DÞ

2α
; ð35Þ

which leads to the same dispersion relation as in Eq. (32).
This clearly shows that, in contrast to the standard Jeans
lore, the gravitational scalar mode δϕ cannot be decoupled
from matter by going at sufficiently short distances. The
origin of the special coupling between matter and the scalar
field in Eq. (33) can also be understood as follows. Taking
the example of L4 for simplicity, one can see that the
variation of (3) with respect to ϕ yields a term of the form
ϕλðgμν þ nμnνÞ∇νRλμ. Using Einstein’s equations (this
assumes to separate L4 into a GR term and an effective
additional term), one can express the Ricci tensor in terms
of the matter energy-momentum tensor, which leads to the
term _ϕ∂tδρm in Eq. (33).
Conclusion.—We have introduced a novel class of scalar-

tensor theories, which include and extend Horndeski
theories. For configurations where the scalar field gradient
is timelike, these theories can be formulated in a very simple
form via an ADM description of spacetime based on uniform
ϕ slicing. This formulation allows us to absorb the scalar
degree of freedom in the spatial metric and makes it
particularly transparent to show the absence of Ostrogradski
instabilities. For generic configurations, one can use dis-
formal transformations to relate subclasses of these theories
to theories with manifest second-order equations of motion.
However, this procedure cannot be simultaneously applied to
the most general case that includes both Lϕ

4 and Lϕ
5 , which

means that a complete understanding of the full covariant
theory requires further investigation.
An important corollary of this work applies to the

original Galileons proposed in Ref. [2]: Their direct
covariantization, obtained by substituting ordinary deriva-
tives with covariant ones, belongs to the class of theories
considered here. Our work suggests that such theories are
already free of ghosts instabilities and do not need the
gravitational “counterterms” prescribed in Ref. [4].

We have also uncovered a remarkable phenomenological
property of the non-Horndeski subclass of our theories:
When minimally coupled to ordinary matter, they exhibit a
kinetic-type coupling, leading to a mixing of the dark
energy and matter sound speeds. It would be interesting to
study further the phenomenology of these theories.
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