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Weak values and measurements have been proposed as a means to achieve dramatic enhancements in
metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very
large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital
questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the
measurement precision? (Q2) Does weak measurement offer better precision than strong measurement?
(Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak
measurement using only classical resources? We analyze these questions for two prototypical, and generic,
measurement protocols and show that while the answers to the first two questions are negative for both
protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative
for configuration space interactions. Our results, particularly the ability of weak measurements to perform
at par with strong measurements in some cases, are instructive for the design of weak-measurement-based
protocols for quantum metrology.
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Weak measurements reveal partial information about a
quantum state without “collapsing” it. This is done by
coupling a measurement apparatus (MA) feebly to a test
quantum system (QS), the dynamics of which is of interest.
A procedure involves probing the QS at an intermediate
stage between a preselected prepared state and a post-
selected state which typically has little overlap with the
prepared state [1]. A subsequent projective measurement on
the MAyields an outcome known as the “weak value.” The
fact that the weak value may lie outside the spectrum of the
measurement operator leads to some interesting results.
This phenomena has been used to study numerous quantum
effects [2–16] as well as to reconstruct the wave functions
of quantum states [17–20].
Weak values may dramatically amplify the small per-

turbations of the meter state arising from the coupling
between the QS andMA [21–23]. This amplification makes
weak measurements potentially useful in estimating the
coupling strength with enhanced precision [24–30]. Yet,
the amplification effect of weak measurement comes at the
cost of a reduced rate at which data can be acquired due to
the requirement to select almost orthogonal pre- and
postselected states of the QS. This leads to a majority of
trials being “lost.” Thus, the central question is whether the
amplification effect of a weak measurement can overcome
the corresponding reduction in the occurrence of such
events to provide an estimation at a precision surpassing
conventional techniques. This issue has garnered substan-
tial interest recently [31,32], in particular the amplification

of information [33–36] and its role in alleviating technical
imperfections [28,37–39]. However, an unequivocal agree-
ment as to the ultimate efficacy of weak measurements in
precision metrology is still lacking. Our endeavor here is to
provide such an answer in the ideal scenario (i.e., without
technical imperfections).
In this Letter, we show that postselection does not enhance

the precision of estimation, that weak measurements do not
offer better precision relative to strong measurements, and
that it is possible to beat the standard quantum limit and to
achieve the Heisenberg limit of quantum metrology with
weak measurements using only classical resources. These
apparently contradictory conclusions arise from a complete
consideration of where the maximum information resides in
the weak-measurement protocol. Our results are valid both
for single-particle MA states, in which the QS couples to a
continuous degree of freedom of the MA, and for multi-
particle states of a bosonic MA. Although in both cases
the MA may have similar mathematical representations, the
degrees of freedom involved are different and, therefore, the
scaling of the precision is different and in consequence
analyzed separately. Our analysis properly counts the
resources involved in the measurement process, enabling
us to compare the precision of different measurement
strategies and strengths using tools of classical and quantum
Fisher information. Weak measurements have a rich struc-
ture, and offer some prospects for novel strategies for
quantum-enhanced metrology. Nonetheless, we show that
a new approach is required to harness this potential.
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Framework.—Our aim is to estimate a parameter asso-
ciated with the interaction between two systems. We focus
on the situation that one of them, the QS, is a two-state
system with eigenstates j − 1i; j þ 1i of an observable Ŝ
with corresponding eigenvalues −1 and 1. The initial
(preselected) state of the QS is prepared as jψ ii ¼
cosðθi=2Þj − 1i þ sinðθi=2Þeiϕi j þ 1i. The initial state of
the other system, the MA, is jΦii. The coupling strength g
which is to be estimated appears in the Hamiltonian H ¼
−gδðt − t0ÞŜ M̂ coupling MA to QS, where M̂ is an
observable of the MA. After this interaction, the joint state
of the MA and the QS is

jΨji ¼ cos
θi
2
j − 1ijΦ−gi þ sin

θi
2
eiϕi j þ 1ijΦþgi; ð1Þ

where jΦ�gi ¼ expð∓ igM̂ÞjΦii. Postselecting the QS in
state jψfi ¼ cosðθf=2Þj − 1i þ sinðθf=2Þeiϕf j þ 1i leads
to the MA state jΦdi ¼ ðγ−d jΦ−gi þ γþd jΦþgiÞ= ffiffiffiffiffiffi

pd
p

, with
γ−d¼cosðθi=2Þcosðθf=2Þ, γþd ¼sinðθi=2Þsinðθf=2Þexpðiϕ0Þ
and ϕ0 ¼ ϕi − ϕf. The probability of successful postse-
lection, i.e., of obtaining jΦdi is pd. When the postselection
fails (with probability pr ¼ 1 − pd), the MA state, which is
not considered in the original protocol and is often ignored
in experiments, is jΦri ¼ ðγ−r jΦ−gi þ γþr jΦþgiÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − pd

p
,

where γ−r ¼cosðθi=2Þsinðθf=2Þ, γþr ¼−sinðθi=2Þcosðθf=2Þ×
expðiϕ0Þ. Repeating the preselection-coupling-postselection
process N times yields Npd copies of jΦdi and Nð1 − pdÞ
copies of jΦri. The best attainable precision in estimating
g is given by the Cramér-Rao bound Δ2g ≥ 1=ðNFtotÞ
[40], where Ftot is the sum total of the classical and
quantum Fisher information (FI) contained at different
stages of the preselection-coupling-postselection process.
Note that the single-parameter Cramér-Rao bound, both
quantum and classical, can always be attained asymptoti-
cally for large N with a maximum-likelihood estimation.
Depending on the estimation protocol, Ftot may have

different values. To date, almost all applications of the weak
measurement to precision metrology focus on the ampli-
fication effect of weak values, which corresponds to
considering the information about g contained in jΦdi.
In this situation, Ftot ¼ pdQd, where Qd is the quantum FI
(QFI) of jΦdi, i.e., the maximum FI that can be achieved
with the optimal measurement on jΦdi, which is a set of
projection operators onto the eigenstates of the symmetric
logarithmic derivative of jΦdi [40]. pdQd can be viewed as
the total information in the postselected meter state. In
addition, one may also monitor the failure mode jΦri to
achieve better precision in parameter estimation [41,42]
and state tomography [20]. The maximum information in
the failure mode is ð1 − pdÞQr, where Qr is the QFI of
jΦri. Finally, the distribution fpd; 1 − pdg of the post-
selection process on QS also contains information about g.
This distribution yields a classical FI Fp which we refer to
as the information in the postselection process. If we

account for all these contributions, we have (see Sec. I
in the Supplemental Material [43] for a proof)

Ftot ¼ pdQd þ ð1 − pdÞQr þ Fp: ð2Þ
The whole process (postselection plus measurements on the
MA state) is a special case of the global measurement on the
joint state jΨji [43]; therefore, Ftot is no larger than the QFI
Qj of jΨji; i.e., postselection cannot increase the precision in
estimating g. This seemingly straightforward result provides
important insight about the relation between the amplifica-
tion effect and measurement precision, and allows us to
access the rich structures of weak measurement and evaluate
their quantum advantages. In particular, we note that Qd or
Qr alone may be larger than Qj due to the amplification
effect of weak values. Nevertheless, this apparent gain of
information is completely canceled by the small probability
of successful postselection. Moreover, the postselection
process may contain important information Fp ≥ 0. This
analysis is different from previous studies [33] by consid-
ering all the contributions to the total information, and thus
provides a complete answer to Q1 posed in the abstract. We
note that a similar conclusion was reached in Ref. [35]. In the
following sections, we provide answers to Q2 and Q3 in both
configuration and phase-space interactions.
Configuration space interactions.—We begin with the

most widely used scenario in weak measurement
[1,9,10,21,24–27,29,30], where both the QS and MA are
single-particle states, possibly in different degrees of free-
dom of the same particle. In this situation, the MA is
normally prepared in a Gaussian superposition state of two
conjugate variables [44],

jΦi ¼
Z

dq
1

ð2πσ2Þ1=4 exp
�
−

q2

4σ2

�
jqi

¼
Z

dp
ð2σ2Þ1=4
π1=4

expð−σ2p2Þjpi; ð3Þ

where p and q are, e.g., momentum and position or time
and frequency. The two representations are related via a
Fourier transform. The interaction Hamiltonian between
the QS and MA is chosen asH ¼ −gδðt − t0ÞŜ q̂. Note that
this interaction Hamiltonian entangles the QS with an
external degree of freedom of the MA. It does not change
the particle-number distribution in the state of the MA.
After the interaction and postselection, the MA state
becomes jΦki ¼

R
dpϕkðg; pÞjpi (k ¼ d; r), with

ϕkðg; pÞ ¼
ð2σ2Þ1=4
π1=4

ffiffiffiffiffi
pk

p ½γ−k e−σ
2ðpþgÞ2 þ γþk e

−σ2ðp−gÞ2 �: ð4Þ

The probability of successful postselection is

pd ¼
1þ cos θi cos θf þ sin θi sin θf cosϕ0e−2s

2

2
; ð5Þ
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with s ¼ gσ characterizing the measurement strength. With
Eqs. (4), (5), we can estimate Qd, Qr, and Fp (using the
Supplemental Material [43]),

Qd ¼
4σ2

pd

�
pd þ Sð2s2 − 1Þ − 1

pd
S2s2

�
;

Qr ¼
4σ2

1 − pd

�
1 − pd − Sð2s2 − 1Þ − 1

1 − pd
S2s2

�
;

Fp ¼ 4σ2s2S2

pdð1 − pdÞ
; ð6Þ

where S ¼ e−2s
2

sin θi sin θf cosϕ0. Furthermore, the QFI
of the joint meter-system state before postselection is
Qj ¼ 4σ2. We can now calculate Ftot for different estima-
tion strategies. In particular, if we take into account all of
the contributions in Eq. (2), we have Ftot ¼ Qj; i.e., we
achieve the maximal precision. A commonly employed
strategy retains only the information in the successfully
postselected meter state. In this case, the complicated
functional form of Ftot ¼ pdQd demands numerical maxi-
mization over ψ i and ψf. Nonetheless, some limits that may
be obtained analytically allow us to answer Q2. In the weak
measurement limit, defined as s → 0,

pdQd ¼ 2σ2ð1þ cos θi cos θf − sin θi sin θf cosϕ0Þ; ð7Þ

the maximum value of which is 4σ2, attained when either
θi ¼ −θf and ϕ0 ¼ 0 or θi ¼ θf and ϕ0 ¼ π. Interestingly,
this does not coincide in general with the situation when
the weak value is the largest, which requires pd ¼
jhψ ijψfij2 → 0 [32]. In the limit of strong measurement,
when s ≫ 1,

pdQd ¼ 2σ2ð1þ cos θi cos θfÞ; ð8Þ

which also attains the maximum of 4σ2, but for the situation
that both pre- and postselected states are j þ 1i or j − 1i.
In both these limits, pdQd ¼ Qj, Fp ¼ 0, and Qr ¼ 0.
More generally, non-Gaussian MA states also achieve this

precision (see Sec. II in the supplemental Material [43] for
proof). This may be relevant to recent experiments that
exploit this resource [45,46]. The conclusion is that, when
the uncertainty of the meter state σ is fixed, the precision in
the weak measurement limit, that is, to estimate a small para-
meter g through preselection-coupling-postselection, is no
better than that in the strong measurement limit, that is, when
the coupling parameter is large. However, if the parameter to
be estimated is fixed, the precision is always better if we use
a meter state with larger σ, as is evident in Eqs. (7), (8) and
Ftot since the FIs are proportional to σ2. This answers Q2 for
the configuration-space-interaction scenario.
This analysis focuses on the effect of the uncertainty in

the external degrees of freedom of the MA as in the

previous works [21,24–27,29–32,41], showing that weak
measurements may or may not offer an overhead advantage.
In quantum metrology, the relevant measure of the resource
required to effect a measurement is the average number of
photons (n) in the MA state. The scaling of the precision of
estimation with respect to n is the signature of whether the
system is capable of operating beyond the standard quan-
tum limit (in which the FI scales linearly in n) and offering
genuine quantum advantages. Since the interaction
Hamiltonian does not change particle-number distributions,
for QS and MA prepared in (multimode) coherent states
with amplitude α, postselected meter states are also multi-
mode coherent states, and the FIs in Eqs. (7), (8) pick up an
additional factor of n ¼ jαj2. Thus, the scalings are at the
standard quantum limit. This is the answer to Q3 for the
configuration-space-interaction scenario.
Phase-space interactions.—We now consider a scenario

that can change the particle-number distribution. The initial
state of the QS jψ ii is the same as before, while the MA is
prepared in a coherent state jαi. A state-dependent inter-
action with M̂ ¼ n̂, where n̂ is the particle number operator,
leads to [47]

jΨi ¼ cos
θi
2
j − 1ijαi þ sin

θi
2
eiϕi j þ 1ijαei2gi: ð9Þ

or [48]

jΨi ¼ cos
θi
2
j − 1ijαe−igi þ sin

θi
2
eiϕi j þ 1ijαeigi: ð10Þ

Both states have the same precision in estimating g when n
is large. In the following, we focus on the symmetric form
in Eq. (10). The meter states after postselection are
(k ¼ d; r) jΦki ¼ ðγ−k jαe−igi þ γþk jαeigiÞ=

ffiffiffiffiffi
pk

p
. The prob-

ability of obtaining this state and the FIs are all given in
Sec. IV in the Supplemental Material [43]. Again, the QFIs
are attainable with the optimal measurement on jΦki.
The QFI of the system-meter state in Eq. (10) is (Sec. III

in [43]) Qj ¼ 4n2sin2θi þ 4n, where n ¼ jαj2 is again the
mean photon number (or energy) of the meter state
{similarly, the QFI of the state in Eq. (9) is Qj ¼
4n2 sin2 θi þ 4n½4 sin2ðθi=2Þ�}.Qj is the maximum amount
of information, and can exhibit quantum scaling (∼n2)
depending on the initial system state. The expression forQj

immediately suggests that θi ¼ 0; π will never provide a
better-than-classical scaling. These are the two cases when
the initial state is an eigenstate of Ŝ, so that no entanglement
is generated between the QS and MA. Indeed, for
jψ ii ¼ j � 1i, pdQd ¼ 2nð1� cos θfÞ, ð1 − pdÞQr ¼
2nð1 ∓ cos θfÞ, and Fp ¼ 0. Thus, Ftot ¼ 4n, but the
information may be equally shared between the successful
and the failed postselection mode. This is important
since the failed postselection mode is generally discarded
completely [21,24–30].
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In contrast, the maximal Qj is found for θi ¼ π=2. We
immediately find that θf ¼ 0; π provides no better than
classical scalings either. Thus, we set θf ¼ π=2 as well, and
find that as g → 0, it leads to

Fp ¼ 4n2: ð11Þ
This result shows that quantum-enhanced scaling can be
attained in the sensing of the coupling parameter g in a
weak measurement setup. On the other hand, in this
same situation, the QFIs for both the successful and
failed postselection mode scale classically; pdQd ¼
4n sin2ðϕ0=2Þ and ð1 − pdÞQr ¼ 4n cos2ðϕ0=2Þ, where
ϕ0 ¼ ϕi − ϕf. This shows that pdQd achieves its maximum
when ϕ0 → π; i.e., ψ i and ψf are orthogonal. Note also that
if we take into account all of the contributions, we have
Ftot ¼ Qj. This is a particularly interesting situation since
most, if not all, earlier experiments considered only the
information Qd contained in the successfully postselected
MA state. Yet, as our calculation shows, the postselection
process has much more information, and indeed scales at
the Heisenberg limit. The parameter g can be estimated
with the precision derived in Eq. (11) from the statistics
of the success or failure of the postselection, using a
maximum likelihood estimator.
For interaction strengths g > 0, the contributions of the

different terms in Ftot change. In Fig. 1, we plot the FI and
QFIs contributing to Ftot for ϕ0 ¼ π. Exploiting a sym-
metry of our model, we only plot the results in
g ¼ f0; π=2g. As shown earlier, for g → 0, the main
contribution comes from Fp, the classical FI in the
postselection distribution. As g increases, Fp falls, and
the information in the postselected states for both success-
ful and failed QS measurement outcomes rises. For

g ¼ π=2, we plot the contributions in greater detail in
Fig. 2 for ϕ0 ¼ π. For this case, Fp ¼ 0, while ð1 − pdÞQr,
pdQd are almost equal. Indeed, the difference in
the QFIs decreases with n, as pdQd − ð1 − pdÞQr ¼
−4nðn − 1Þ expð−2nÞ. For n ≫ 1, up to a small exponen-
tial correction, there is thus as much information in the
successful postselection mode as in the failed mode, and
both of them scale better than the classical scaling. In all
cases, the total Ftot still matches the maximum QFI
attainable, that is Qj. These results provide answers to
Q2 and Q3 for the conditional-phase-shift scenario.
Discussion and conclusions.—It is perhaps unsurprising

that the Heisenberg limit for estimating the coupling param-
eter g in the conditional-phase-shift interaction can be
attained when the system-meter coupling is strong, since
in that case, the postselected MA states are Schrödinger-cat
states. That is, the measurement protocol produces highly
nonclassical states in the joint system. In the case of weak
coupling (g → 0), however, the postselected MA states are
classical, and the Heisenberg scaling arises only in the
postselection process itself. How this conditioning step using
a classicalMA state achieves a precision beyond the standard
quantum limit is therefore an interesting open question.
Our calculations show that not only the failed postselec-

tion mode but the postselection process itself contains useful
information. The analysis provides answers to three long-
standing questions in the study of weak measurement posed
in the abstract: (A1) postselection cannot enhance the mea-
surement precision even when all the contributions are taken
into account; (A2) for equal resources, weak measurement
does not give improved precision over strong measurement,
when both measurements are optimized. In particular, this
result applies to all previous experiments that have explored
weak-measurement enhancements to precision metrology.

FIG. 2 (color online). Classical and quantum FIs for g ¼ π=2. in
the conditional phase-rotation scenario with ψ i ¼ ðj − 1i þ j þ
1iÞ= ffiffiffi

2
p

and ψf ¼ ðj − 1i − j þ 1iÞ= ffiffiffi
2

p
, and initial MA state jαi.

Green curve, pdQd. Blue curve, ð1 − pdÞQr. Black curve,
Qj ¼ 4n2 þ 4n, and Brown curve, classical scaling of 4n. Fp

is not shown since it is 0. The green and blue lines add up to the
black line.

FIG. 1 (color online). Contributions to the total information
from the three constituents in the conditional-phase-rotation
scenario with pre- and postselected QS state ψ i ¼ ðj − 1i þ j þ
1iÞ= ffiffiffi

2
p

and ψf ¼ ðj − 1i − j þ 1iÞ= ffiffiffi
2

p
, and initial MA state jαi.

Red curves, Fp. Green curves, pdQd. Blue curves, ð1 − pdÞQr.
The sum of three quantities Ftot equals Qj, the total QFI of the
joint system-meter state which is 4n2 þ 4n and n ¼ jαj2.
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(A3) Weak measurement that modifies the particle-number
distribution of the meter state can yield quantum-enhanced
precision, though no nonclassical states need be involved.
These results highlight the rich structure of the weak
measurement and shed new light on both the understanding
of quantum measurement and the development of new
technologies for practical quantum metrology.
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