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We perform generalized measurements of a qubit by realizing the qubit as a coin in a photonic quantum
walk and subjecting the walker to projective measurements. Our experimental technique can be used to
realize, photonically, any rank-1 single-qubit positive-operator-valued measure via constructing an
appropriate interferometric quantum-walk network and then projectively measuring the walker’s position
at the final step.
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Quantum walks (QWs) exhibit distinct features com-
pared to classical random walks with applications to
quantum algorithms [1,2]. The one-dimensional (1D)
discrete-time QW is a process in which the evolution of
a quantum particle on a 1D lattice depends on the state of a
coin, typically a two-level system, or qubit. Controlling the
coin degree of freedom indirectly controls the walker, and,
through this indirect control, the walker’s state can be
measured to infer the coin state. Rigorously speaking,
walker-coin entanglement and projective measurement
of the walker yields a positive-operator-valued measure
(POVM) on a single qubit [3]. Furthermore, any rank-1 or
rank-2 single-qubit POVM can be generated by a judi-
ciously engineered QW. The QW model is capable of
serving as a universal quantum computer [4–6] as well as
replicating quantum transport processes [7,8], so an impor-
tant question is how far theQWmodel can be pushed towards
replacing other quantum information tasks such as general-
ized measurements [9], which we address here experimen-
tally. We demonstrate, experimentally, the capability of
performing such generalized measurements of a qubit by
realizing thewalker in the path degree of freedomof a photon
and the coin state as polarization and performing optical
interferometry with a path-based photodetector to perform a
POVM on the photon’s polarization state.
A POVM [9] is a set of positive operators Ei such that the

probability of obtaining the ith outcome is given by
TrðEiρÞ, where ρ is the density operator for the system
being measured. A POVM must satisfy the completeness
condition,

P
iEi ¼ 1, which is equivalent to saying the

probabilities of the outcomes must sum to unity. Realizing
a POVM is important as a POVM is needed for generalized

acquisition of information thereby associated with a multi-
tude of quantum information tasks such as quantum
state estimation and tomography [10], quantum cloning
[11], entanglement distillation [12], and generalized quan-
tum cryptography protocols [13]. Single-qubit POVMs
have been performed experimentally in photonic systems
via polarization-based free-space interferometers [14–17].
POVMs’ wide applications include unambiguous state
discrimination [18–21] and quantum state tomography
in terms of symmetric informationally complete (SIC)
POVMs [22–25]. For the former case, unambiguous state
discrimination betweenN states hasN þ 1 outcomes: theN
possible conclusive results, and the inconclusive result. As
no projective measurement in an N-dimensional Hilbert
space can have more than N outcomes, generalized mea-
surements such as POVMs are required, whereas a SIC
POVM is a generalized measurement on a N-dimensional
quantum state, which consists of N2 subnormalized projec-
tion operators with equal pairwise fidelity.
Our goal is to realize, experimentally, a single-qubit

POVM and to discriminate between nonorthogonal initial
coin states via executing a properly engineered QW whose
projective walker measurement is sometimes inconclusive
[3]. To achieve a site-specific POVM, we control the
internal degree of freedom of the measured two-level coin.
Here, we report our successful experimental realization of
POVMs, including the unambiguous state discrimination of
two equally probable single-qubit states and a single-qubit
SIC POVM, via a one-dimensional photonic QW.
We focus on rank-1 POVMs, as higher-rank POVMs can

be constructed as a convex combination of rank-1 elements
[3]. Our experimental technique can be used to realize,
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photonically, any rank-1 single-qubit POVM via construct-
ing an interferometric QW and projectively measuring the
walker’s position at the final step.
A standard model of a 1D discrete-time QW consists of a

walker carrying a coin that is flipped before each step. In the
coin-state basis fj0i; j1ig, the site-dependent coin rotation
for the nth stepCx;n ∈ SUð2Þ is applied to the coin when the
walker in the position x, followed by a conditional position
shift due to the outcome of the coin flipping for each
step T¼P

xjxþ1ihxj⊗j0ih0jþjx−1ihxj⊗j1ih1j. The uni-
tary operation for the nth step is Un ¼ T

P
xjxihxj ⊗ Cx;n.

We commence with the simplest nontrivial case, namely,
a three-step QW approach to implement an unambiguous
state discrimination of two single-qubit states. Two non-
orthogonal pure states can always be encoded as

jϕ�i ¼ cos
ϕ

2
j0i � sin

ϕ

2
j1i; ð1Þ

where ϕ ∈ ½0; π=2�. Our objective is to discriminate these
two states with equal prior probability for three outcomes:
conclusively measuring one or the other state (1) or
obtaining an inconclusive measurement result. We prepare
an initial coin state in either of the two states (1). For a
properly engineered QW procedure, the walker with the
different initial coin states arrives at different position
distributions. By projective measurement onto the walker’s
position, initial coin states can be discriminated.
For our realization, the coin is initially prepared in

jϕ�i, and the walker starts from the origin jx ¼ 0i.
The site-dependent coin rotations for the first three
steps are

C1;2 ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− tan2 ϕ

2

q
tan ϕ

2

tan ϕ
2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− tan2 ϕ

2

q
1
CA;

C−1;2 ¼ σx ¼
�
0 1

1 0

�
; C0;3 ¼

1ffiffiffi
2

p
�
1 1

1 −1

�
; ð2Þ

and 1 elsewhere, for example C0;1 ¼ 1. Each step, the site-
dependent coin rotations are followed by a conditional
position shift T. Then, the initial walker-coin states jφ�

0 i ¼
j0ijϕ�i evolve into

jφþ
3 i ¼

ffiffiffiffiffiffiffiffiffiffiffi
cosϕ

p
j3ij0i þ

ffiffiffi
2

p
sin

ϕ

2
j1ij0i;

jφ−
3 i ¼

ffiffiffiffiffiffiffiffiffiffiffi
cosϕ

p
j3ij0i −

ffiffiffi
2

p
sin

ϕ

2
j − 1ij1i; ð3Þ

respectively. The walker is projectively measured in
the position basis. If the position measurement outcome
is x ¼ 1 (x ¼ −1), then, we ascertain that the initial coin
state was jϕþi (jϕ−i). If the walker is, instead, measured in
x ¼ 3, we do not know the initial coin state; that is, x ¼ 3

corresponds to an inconclusive result with probability
ηerr ¼ jhϕþjϕ−ij ¼ cosϕ. The probability of the inclusive
result depends on the similarity of the two states, which
agrees with the Ivanovic-Dieks-Peres bound obtained from
the optimum strategy of this kind for unambiguous state
discrimination [18–20]. For the boundary case of ϕ ¼ 0,
the two states in Eq. (1) are the same, whereas, for the case
of ϕ ¼ π=2, the two states are orthogonal and the meas-
urement is projective.
The QW is proven to be universal for generating an

arbitrary single-qubit POVM [3], and we show an example
of a properly engineered five-step QW for generating a
single-qubit SIC POVM. For example, we choose

jξ1i¼ j0i; jξ2i¼ 1ffiffiffi
3

p ðj0iþ
ffiffiffi
2

p
j1iÞ;

jξ3i¼ 1ffiffiffi
3

p ðj0iþλ
ffiffiffi
2

p
j1iÞ; jξ4i¼ 1ffiffiffi

3
p ðj0iþ λ�

ffiffiffi
2

p
j1iÞ;

ð4Þ

satisfying jhξijξjij ¼ 3−1=2 for i ≠ j and 1
2

P
4
i jξiihξij ¼ 1

for λ ¼ ei2π=3. Now, we construct four states orthogonal to
the above states (4) and prepare the coin state in one of
these four coin states

jψ1i ¼ j1i; jψ2i ¼ 1ffiffiffi
3

p ð
ffiffiffi
2

p
j0i − j1iÞ;

jψ3i ¼ 1ffiffiffi
3

p ð
ffiffiffi
2

p
j0i − λj1iÞ;

jψ4i ¼ 1ffiffiffi
3

p ð
ffiffiffi
2

p
j0i − λ�j1iÞ: ð5Þ

The site-dependent coin rotations for the first five
steps are

C1;2 ¼
1ffiffiffi
2

p
�

1 −1
−1 −1

�
; C0;3 ¼

1ffiffiffi
2

p
�−1 1

1 1

�
;

C−1;2 ¼ C−1;4 ¼ σx;

C1;4 ¼
1ffiffiffi
3

p
� ffiffiffi

2
p

1

1 −
ffiffiffi
2

p
�
;

C0;5 ¼
1ffiffiffi
2

p
�
e−iðπ=3Þ eiðπ=6Þ

eiðπ=3Þ e−iðπ=6Þ

�
; ð6Þ

and 1 elsewhere. The coin operators chosen here depend
only on the states we aim to discriminate. Following the
five-step QW procedure including specific site-dependence
coin rotations, the initial states of the walker-coin system
jφi

0i ¼ j0ijψ ii (i ¼ 1; 2; 3; 4) evolve to
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jφ1
5i ¼

1ffiffiffi
3

p ð−j3ij0i − ij1ij0i þ ij − 1ij1iÞ;

jφ2
5i ¼

1ffiffiffi
3

p ðj5ij0i − e−iðπ=3Þj1ij0i − eiðπ=3Þj − 1ij1iÞ;

jφ3
5i ¼

1ffiffiffi
3

p ðj5ij0i − e−iðπ=6Þj3ij0i − j1ij0iÞ;

jφ4
5i ¼

1ffiffiffi
3

p ðj5ij0i − eiðπ=6Þj3ij0i − j − 1ij1iÞ: ð7Þ

Evidently, the final walker-coin states have differing sup-
port over position x, so by measuring the position of the
walker, the initial coin state can be determined with some
degree of certainty. Specifically, jφ1;2;3;4

5 i cannot be found
at x ¼ 5, x ¼ 3, x ¼ −1, and x ¼ 1, respectively. Thus, we
realize all elements jξiihξij=2 (i ¼ 1; 2; 3; 4) of a qubit SIC
POVM through a QW procedure.
The realization of the unambiguous state discrimination

of two equally probable single-qubit states via a three-step
QW is shown in Fig. 1(a). Inspired by [26,27] but, instead,
realizing site-dependent coin operations with unmounted
fixed-angle wave plates (WPs) calibrated prior to insertion
by tomography rather than rotatable WPs, we can

demonstrate POVMs. The coin qubit is encoded in the
horizontal jHi ¼ j0i and vertical polarization jVi ¼ j1i of
photons. The walker’s positions are represented by longi-
tudinal spatial modes. The polarization degenerate photon
pairs are generated via type-I spontaneous parametric down
conversion (SPDC) in 0.5 mm-thick nonlinear-β-barium-
borate (BBO) crystal, which is pumped by a cw diode laser
with 90 mW of power. For 1D QWs, triggering on one
photon prepares the other beam at wavelength 801.6 nm into
a single-photon state. Total coincidence counts are about
3.4 × 104 over a collection time of 60 s, and the probability
of randomly creating more than one simultaneous photon
pair is, thus, less than a negligible 10−4.
The initial coin state can be prepared by the half-wave

plate (HWP) or quarter-wave plate (QWP) right after the
polarizing beam splitter (PBS) shown in Fig. 1. After
passing through the PBS and WP, the down-converted
photons are steered into the optical modes of the linear-
optical network formed by a series of birefringent calcite
beam displacers (BDs) and WPs. The site-dependent coin
rotations Cx;n for the nth step can be realized by HWPs and
QWPs with specific setting angles placed in mode x.
The conditional position shift is implemented by a BD

with length 28 mm and clear aperture 10 × 10 mm. The
optical axis of each BD is cut so that vertically polarized
photons are directly transmitted and horizontal photons
move up a 2.7 mm lateral displacement into a neighboring
mode and interfere with the vertical photons in the same
mode. Certain pairs of BDs form an interferometer and are
placed in sequence and need to have their optical axes
mutually aligned.
We attain interference visibility of 0.992 for each step.

Output photons are detected using avalanche photo-diodes
(APDs) (7 ns time window) with a dark-count rate of less
than 100 s−1 whose coincidence signals, monitored using
commercially available counting logic, are used to post-
select two single-photon events. The walker position
probabilities are obtained by normalizing the coincidence
counts on each mode with respect to the total count for each
respective step.
For site-dependent coin flipping, the optical delay

usually needs to be considered. Fortunately, in our experi-
ment on unambiguous state discrimination, only the first
and second BDs form an interferometer. For the third step
of the QW, the photons in mode x ¼ 2, which are all in jHi,
move up to mode x ¼ 3 after the last BD and, thus, do not
interfere with other photons. Thus, no optical compensate is
needed and the difficulty of the realization of the experi-
ment is decreased.
The measured probability distributions of a three-step

QW for unambiguous state discrimination are shown in
Fig. 2. We choose a different coefficient ϕ and prepare the
initial coin state to the corresponding state jϕ�i. For either
of the two states, the photons undergoing the QW network
are measured at the mode x ¼ 3 for inclusive results and

FIG. 1 (color online). Experimental schematic. (a) Detailed
sketch of the setup for realization of unambiguous state dis-
crimination of two equally probable single-qubit states via a
three-step QW. Single photons are created via SPDC in a BBO
crystal. One photon in the pair is detected to herald the other
photon, which is injected into the optical network. (b) Setup for
realization of a qubit SIC POVM via a five-step QW. The initial
coin states for realization of SIC POVM jψ1;2i are prepared by a
HWP, whereas jψ3;4i are prepared by a QWP with certain setting
angles. Site-dependent coin flipping is realized by HWPs (and
QWPs) with different setting angles placed in different optical
modes. (c) Detailed interferometric setup formed by the third
and fourth BDs, which are used in the experimental realization
of a qubit SIC POVM. Unmounted WPs are inserted into
specific optical paths such that only certain beams transit. WP
angles are fixed (not rotatable) and calibrated via tomography
before insertion.
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x ¼ �1 for conclusive results. Two pronounced peaks for
each ϕ shown in the probability distribution in Figs. 2(a)
and 2(b) validate the demonstration of unambiguous
state discrimination. With ϕ increasing from 45° to 90°,
the probability of inconclusive results ηerr of the discrimi-
nation of the state jϕþi decreases from 0.7139� 0.0030
to 0.0070� 0.0060 (from 0.7125� 0.0031 to 0.0080�
0.0071 to discriminate the state jϕ−i) shown in Fig. 2(c),
agreeing with the Ivanovic-Dieks-Peres bound.
Taking a superposition of jϕ�i as an initial coin state

ajϕþi þ bjϕ−i (non-normalized), with a; b ∈ R, the ratio
of the probabilities for the two conclusive results is a2=b2,
which is also demonstrated in our experiment. In Fig. 2(d),
we show with a ¼ b the probabilities of x ¼ 1 and x ¼ −1
are measured approximately equal, i.e., Pð1Þ ¼ 0.0854�
0.0015 and Pð−1Þ ¼ 0.0850� 0.0015.
We characterize experimental performance by the one-

norm distance [26] between the walker distribution
obtained experimentally PexpðxÞ vs theoretically PthðxÞ
over integer-valued position x. This distance is

d ¼ 1

2

X
x

jPexpðxÞ − PthðxÞj; ð8Þ

and a small distance indicates a successful experimental
realization.
The unambiguous state discrimination is confirmed by

direct measurement and found to be consistent with the

ideal theoretical values at the level of the small average
distance d < 0.02 and the fidelity of the coin state
measured in the position (x ¼ �1) F > 0.9911.
The realization of a qubit SIC POVM via a properly

engineered five-step QW is shown in Fig. 1(b). For site-
dependent coin flipping, the challenge is placing the WP
into a given optical mode without influencing the photons
in the other modes. For example, in Fig. 1(c), for the fourth
step, the polarizations of photons in modes x ¼ �1 should
be rotated by a HWP with setting angles θH ¼ 17.63° and
θH ¼ 45°, respectively, to realize the site-dependent coin
rotations C�1;4, and the photons in those two modes
interfere in mode x ¼ 0 at the fourth BD. Because of
the small separations between the neighboring modes, it is
difficult to inset a HWP in the middle mode x ¼ 1 and
avoid the photons in the neighboring modes passing
through it.
In our experiment, we place a HWP with θH ¼ 17.63° in

both modes x ¼ 1 and x ¼ 3 followed by a HWP with the
same angle in mode x ¼ 3 and a HWP with 45° in mode
x ¼ −1. Thus, the photons in modes x ¼ �1 do not suffer
an optical delay and interfere with each other with a high
visibility. The polarizations of photons in mode x ¼ 3 are
not changed after two HWPs with the same angle. The
photons in mode x ¼ 3 do not interfere with those in the
other modes, though there is optical delay between them.
Hence, optical compensation is not required.
The measured probability distributions of a five-step QW

for a qubit SIC POVM are shown in Fig. 3, which agree
well with the theoretical predictions. Using the experimen-
tal distribution of the QW with the initial coin state jψ1i as
an example, after five steps, the probability Pð5Þ is

FIG. 2 (color online). Experimental data for unambiguous state
discrimination via a photonic QW. Measured position distribu-
tions for the three-step QWwith site-dependent coin and (a) initial
coin state jϕþi and (b) jϕ−i; various coefficients ϕ of jϕ�i for
unambiguous state discrimination. (c) Measured probability
ηerr for inconclusive results vs parameters ϕ, which are related
to the state to be discriminated; compared to theoretical pre-
dictions. Error bars are smaller than portrayed by the symbols.
(d) Position distribution for the three-step QW with initial coin
state jHi, which is an equally weighted superposition of jϕ�i
with ϕ ¼ 45°. The blue and red bars show the experimental data
and theoretical predictions, respectively. Error bars indicate the
statistical uncertainty.

FIG. 3 (color online). Experimental data of a qubit SIC POVM
via a photonic QW. Measured probability distributions of the
five-step QW with the site-dependent coin rotations and four
different initial coin states jψ ii with i ¼ 1; 2; 3; 4 in (a)–(d),
respectively.
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measured as 0.0140� 0.0007 and, thus, is very small
compared to the probabilities of the photons being mea-
sured in the other modes, i.e., Pð−1Þ ¼ 0.3260� 0.0036,
Pð1Þ ¼ 0.3285� 0.0037, Pð3Þ ¼ 0.3315� 0.0037, which
ensures that one of the elements of a qubit SIC POVM is
realized successfully. The small distance d < 0.033 dem-
onstrates strong agreement between theoretical and mea-
sured distribution after five steps. Dominant sources of
experimental errors are an inaccuracy of angles controlled
by the WPs and imperfect nonunit visibility.
We report three figures of merit to characterize aspects of

our experiment: interference visibility whose value conveys
primarily how parallel the BDs are but is also affected by all
other imperfections; polarization fidelity affected mostly by
the quality of the WP placement; and one-norm distance to
convey how well the task itself is performed. In the
Supplemental Material [28], we add a fourth figure of
merit, namely, fidelity of the reconstructed density matrix
as background information for specialists on the reliability
of the inference of the coin state.
In summary, we experimentally show that QWs are

capable of performing generalized measurements on a
single qubit. Our demonstration employs a novel photonic
QW with site-dependent coin rotation for realizing a
generalized measurement [3]. The key experimental
advance for realizing a QW-based generalized measure-
ment is the application of site-dependent coin rotations to
control the coin’s internal dynamics and, thereby, effect the
evolution of the walker. Thus, we have demonstrated a new
and versatile approach to generalized qubit measurements
via photonic quantum walks.
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